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ABSTRACT 

 
Externally bonded fiber reinforced cementitious matrix (FRCM) composites have 

been investigated recently as an alternative to fiber reinforced polymer (FRP) composites 

to overcome certain shortcomings such as the inability to install on wet surfaces or in low 

temperatures, low fire resistance, low glass transition temperature, low reversibility, and 

lack of vapor permeability. This study includes an inclusive investigation of the torsional 

behavior of RC beams strengthened with externally bonded polyparaphenylene benzo-

bisoxazole (PBO)-FRCM composite material. A comprehensive review and discussion of 

the previous experimental, analytical, and numerically-simulated torsional behavior of 

RC beams strengthened with FRP composite was introduced to gain a better 

understanding of their behavior. Then, an experimental campaign was conducted that 

included 11 solid rectangular RC beams, one without strengthening and 10 that were 

externally strengthened with PBO-FRCM composite. The effect of different parameters 

such as number of wrapped sides, the continuity of composite layer, number of composite 

layers, and fiber orientation on the torsional behavior in terms of strength, rotational 

ductility, and failure mode was investigated. Finite element and analytical models of the 

PBO-FRCM-strengthened beams were developed and verified with the experimental 

results. The contribution of the composite to the torsional strength was estimated based 

on the measured strain using design provisions for FRP-strengthened beams to examine 

the applicability of these provisions to the FRCM composite system. Furthermore, a 

comparison with other composite systems was conducted to compare the efficiency of the 

PBO-FRCM composite system on increasing the torsional strength of RC beams.    
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1. INTRODUCTION 

 
1.1 BACKGROUND  

Damage and/or deterioration of reinforced concrete (RC) structures during their 

service life can be repaired by adding extra reinforcement, which can be achieved by 

externally bonded composite material. Externally bonded composite is also applicable for 

strengthening existing structural members to increase the load carrying or ductility 

capacity for which they were designed. This increase may be required due to changes in 

use of the structure or to errors in design or construction. 

The use of fiber reinforced polymer (FRP) composite has been widely 

investigated over last several decades as a strengthening technique. The effectiveness of 

this composite material in infrastructure applications is due to high strength and stiffness, 

light weight, resistance to corrosion, low thermal conductivity, and flexibility of use. The 

FRP composite system contains continuous fibers (e.g., carbon or glass) and liquid 

polymer matrix (e.g., epoxy resin). This system has been used successfully for 

strengthening of RC beams subjected to flexural, shear, axial, and torsional loading. In 

spite of the capabilities of this system, FRP composites have several disadvantages 

including difficulty to install onto wet surfaces or in low temperatures, low fire 

resistance, low glass transition temperature, and lack of vapor permeability, which are 

associated with the use of organic matrix.  

In last two decades, a new type of composite material called fiber reinforced 

cementitious matrix (FRCM) composite has been developed to overcome or reduce some 

of the shortcomings associated with FRP composites. In this system, different types of 
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fabric meshes are used such as polyparaphenylene benzobisoxazole (PBO), carbon, glass, 

aramid, basalt, and steel, which are embedded in an inorganic matrix. The use of 

inorganic matrix results in better compatibility with concrete and masonry substrates as 

compared with organic material (epoxy resin). The inorganic matrix can also be applied 

in low temperatures and onto wet surfaces, allows vapor permeability, has better heat 

resistance and lower cost than the epoxy resin. Alternative names of this system are 

Textile Reinforced Mortar (TRM), Fiber Reinforced Concrete (FRC), Mineral Based 

Composites (MBC), Steel Reinforced Grout (SRG), and Textile Reinforced Concrete 

(TRC). 

PBO-FRCM composite has been investigated for strengthening of RC beams 

subjected to flexural, shear, and axial loading. However, there are no studies in the 

technical literature on the use of the PBO-FRCM composite for torsional strengthening. 

Torsion occurs in many structures, such as in the main girders of bridges, which are 

twisted by transverse beams or slabs. Torsion also occurs in buildings where the edge of a 

floor slab and its beams are supported by a spandrel beam spanning between the exterior 

columns. Furthermore, earthquakes can cause torsional forces in buildings. Other cases 

where torsion may be significant are in curved bridge girders, spiral stairways, and 

balcony girders. In order to effectively utilize PBO-FRCM composite as a torsional 

strengthening system for RC beams, the behavior of the strengthened beams must be 

understood. Therefore, a comprehensive investigation on the torsional behavior of RC 

beams strengthened with PBO-FRCM composite material is needed. 
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1.2 OBJECTIVE AND SCOPE OF WORK  

The objective of this study was to explore the torsional behavior of RC beams 

strengthened with externally bonded PBO-FRCM composite material. In order to 

evaluate the effectiveness of the composite system, experimental, numerical, and 

analytical studies were conducted in this research. To achieve the objective of this study, 

the scope of work included the following: 

• A comprehensive review of the literature on the fundamental behavior of RC 

beams strengthened with FRP composites under torsional loading was 

conducted. Research on FRP-composite strengthened beams was investigated 

since no such studies have been reported on the torsional strengthening of RC 

beams using FRCM composites; 

• A series of PBO-FRCM-strengthened RC beams was designed, constructed, 

and tested under torsional loading. Different parameters were investigated 

including number of wrapped sides, the continuity of composite layer (along 

the beam length), number of composite layers, and fiber orientation; 

• The torsional behavior of the experimentally tested PBO-FRCM-strengthened 

RC beams was explored in terms of strength, rotational ductility, and failure 

mode; 

• Strains measured in the internal and external reinforcement were analyzed to 

evaluate the contribution of each component to the torsional strength; 
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• Design provisions used to estimate the torsional strength of RC beams with 

fully-wrapped, externally-bonded FRP composites were examined to 

determine the applicability to beams strengthened with PBO-FRCM 

composite;  

• The efficiency of the PBO-FRCM composite system was compared with that 

of CFRP and GFRP composites; 

• A nonlinear finite element analysis was developed to analyze the 

experimentally tested beams in order to study more thoroughly the torsional 

behavior of RC beams strengthened with PBO-FRCM composite material; 

• A parametric study was conducted with the verified finite element model to 

examine the influence of different parameters on the torsional behavior and 

capacity of RC beams strengthened with PBO-FRCM composite. This study 

was important to archive more data and provide researchers more information 

about the most effective parameters that should be considered in design of the 

PBO-FRCM composite strengthening system. 

• An analytical model that was originally developed for FRP-strengthened RC 

beams was adapted to predict the full torsional response of RC beams 

strengthened with PBO-FRCM composite.  
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1.3 RESEARCH SIGNIFICANCE  

The importance of the presented work in this dissertation is to understand the 

fundamental torsional behavior of RC members externally strengthened with PBO-

FRCM composite material and the parameters that potentially influence their 

performance.  

 

1.4 DISSERTATION ORGANIZATION  

This dissertation includes three sections. Section 1 gives a brief introduction to 

the subject area and explains the need for the current research study. The first section also 

presents the overarching objective and scope of work of the investigation. 

Section 2 presents the results of this study in the form of five manuscripts: two 

published journal papers, one journal paper in press, one journal paper in review, and one 

that will be submitted for review. The first paper is a detailed literature review to 

establish the state-of-the-art on the studied topic. The first paper presents a 

comprehensive summary and review of torsional strengthening of RC beams with FRP 

composite material, and it includes findings from experimental studies as well as 

analytical and numerical studies. The second and third papers present the experimental 

study on torsional strengthening of 11 RC beams, one without strengthening as a control 

beam and 10 strengthened with PBO-FRCM composite material in different wrapping 

configurations. The fourth paper presents a numerical study on the behavior of PBO-

FRCM-strengthened RC beams and includes a comparison the experimental results. 

Finally, the fifth paper presents an analytical study in which the full torsional response of 
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PBO-FRCM-strengthened RC beams is predicted, and results are compared with the 

experimental results. 

Section 3 summarizes the findings and conclusions of this study and proposes 

future research. 
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PAPER 

 
I. TORSIONAL STRENGTHENING OF REINFORCED CONCRETE BEAMS 

WITH EXTERNALLY BONDED COMPOSITES: A STATE OF THE ART 
REVIEW 

 
Meyyada Y. Alabdulhady, and Lesley H. Sneed 

 
ABSTRACT 

The use of externally bonded fiber reinforced composites to strengthen reinforced 

concrete (RC) structures has been explored extensively in recent decades. While many 

studies have been conducted on the flexural, shear, and axial strengthening of RC 

members, far fewer studies have been conducted on torsional strengthening. Thus, the 

knowledge on the behavior of RC beams strengthened in torsion with externally bonded 

composites is rather limited. The aim of this paper was to present a comprehensive 

review and evaluation for torsional strengthening of RC beams using externally bonded 

composites. A detailed survey of the literature was conducted, and a database of 

experimental tests was developed and presented. The effectiveness of the strengthening 

system was examined in terms of geometrical and mechanical characteristics of the RC 

beam, and composite type and wrapping configuration. Different modes of failure of the 

strengthened beams were also discussed. Additionally, numerical and analytical methods 

developed to predict the torsional response of RC beams strengthened with externally 

bonded composites were summarized and discussed. Finally, recommendations based on 

the knowledge gained from this study were introduced. 
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1. INTRODUCTION 

Reinforced concrete (RC) members in buildings, bridges, and other structures can 

be subjected to significant torsional moment, which could lead to failure. The number of 

studies on the torsional behavior of RC structural members is quite limited due to the fact 

that torsion is considered a secondary effect compared with flexural and shears behaviors. 

However, torsional effects can be significant for certain cases such as for spandrel and 

curved beams in buildings and curved girders in bridges. Furthermore, earthquakes can 

cause severe torsional damage in structures [1].   

Different techniques have been explored for strengthening of RC beams subjected 

to torsional moment. One technique includes the addition of external reinforcement to the 

member. The use of fiber reinforced polymer (FRP) composites as an external 

reinforcement for repairing and strengthening of RC structures has proven to be an 

effective and efficient technique compared to traditional solutions (e.g., steel jackets [2]). 

FRP composites are comprised of continuous fibers that are embedded in a polymeric 

matrix that is used to bind the fibers to the substrate and to transfer stresses between the 

substrate and fibers. Positive attributes of this material include its high strength-to-weight 

ratio, resistance to corrosion, low thermal conductivity, and flexibility of use. 

Experiments have demonstrated that externally bonded FRP composites can be used 

effectively to strengthen RC beams in torsion [3-14].  

Recently, a new type of composite called fiber reinforced cementitious matrix 

(FRCM) composite has been developed and considered as an alternative to FRP 

composites. FRCM composites are comprised of continuous fibers embedded in an 

inorganic (e.g., cementitious) matrix, which affords better compatibility with the concrete 
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substrate when compared with the organic matrix (epoxy resin) used in FRP composites. 

FRCM composites can also be applied in low temperatures and on wet surfaces, allow 

vapor permeability, and have better heat resistance compared to FRP composites. Fibers 

in FRCM composites are typically bundled to provide better bond between the fibers and 

matrix. Alternative names of this system are Textile Reinforced Mortar (TRM), Fiber 

Reinforced Concrete (FRC), Mineral Based Composites (MBC), Steel Reinforced Grout 

(SRG), and Textile Reinforced Concrete (TRC). Research on the use of FRCM 

composites in structural strengthening applications is in its infancy, and currently, there 

are few studies in the technical literature on its use for torsional strengthening of RC 

members [15] [16].  

In this paper, the state of research on torsional strengthening of RC beams with 

externally bonded fiber reinforced composites is presented. From a detailed survey of the 

literature, a database of experimental tests is developed and discussed. The effectiveness 

of the strengthening system is examined in terms of geometrical and mechanical 

characteristics of the RC beam, composite type, and composite wrapping configuration. 

Different modes of failure of the strengthened beams are also discussed. Then, numerical 

and analytical methods developed to predict the torsional response of RC beams 

strengthened with externally bonded composites are summarized and discussed. Finally, 

recommendations based on the knowledge gained from this study were introduced. It 

should be noted that this study is focused on composites bonded to the surface of the 

member; studies on near surface mounted (NSM) composites [e.g., 17-19] are not 

included in this survey. 
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2. EXPERIMENTAL DATABASE  

The use of externally bonded composites to strengthen RC beams in torsion has 

been investigated experimentally since the early 2000s. Fourteen studies on the torsional 

strengthening of RC beams with externally bonded composites were found in the 

technical literature. A database that includes the characteristics of the RC beams, the 

composite strengthening systems, and experimental results was developed and is 

summarized in Table 1. Eighty beams with different cross-sections, composite types, and 

wrapping configurations, tested under static loading [3-5, 7-16] or cyclic loading [6] are 

included in the database. Figure 1 illustrates the different cross-sections and wrapping 

configurations reported. 

In the evaluation of the collected data, the data were subdivided based on the 

mode of failure. Three main types of failure modes were reported: concrete damage, 

debonding of the composite from the composite substrate, and fiber rupture. Additional 

discussion on failure mode is presented in Section 4. 

 

3. EVALUATION OF THE DATABASE AND DISTRIBUTION OF DATA 

3.1 GEOMETRY AND MECHANICAL PROPERTIES OF THE 
STRENGTHENED BEAMS  

 
Figure 2 shows in the increase in torsional strength Tu, relative to the 

corresponding unstrengthened (control) beam, as a function of the geometrical and 

mechanical properties of the RC beam. Figure 2 plots the percent increase in Tu as a 

function of the concrete compressive strength f’c, volumetric ratio of the internal 

longitudinal reinforcement 𝜌𝜌𝑠𝑠𝑠𝑠 = 𝐴𝐴𝑠𝑠𝑠𝑠 𝐴𝐴𝑐𝑐⁄ , and internal transverse volumetric ratio 
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𝜌𝜌𝑠𝑠𝑠𝑠 = 𝐴𝐴𝑠𝑠𝑠𝑠
𝐴𝐴𝑐𝑐

𝑝𝑝𝑠𝑠
𝑠𝑠

, where Asl is the total area of longitudinal bars, Ac is the gross concrete area 

(Ac=bh), Ast is the area of one leg of a stirrup, pt is the perimeter of a stirrup, and s is the 

center-to-center spacing of stirrups.  

The results in Figure 2 show that the increase in Tu achieved by the external 

strengthening varies from 0% to 178% with an average of 51%. 75% of the tests were 

performed on beams with f’c ranging from 20-40 MPa (Figure 2a). These values of 

concrete compressive strength are relatively low for new structures but can be considered 

suitable to represent the compressive strength of existing structures. All beams that 

exhibited a concrete damage failure mode had concrete compressive strengths in this 

range. It should be noted that beams with higher concrete compressive strengths, i.e., 

from 40-80 MPa, did not achieve a higher torsional strengths. This can be explained by 

the change in failure mode from concrete damage to composite debonding or rupture.   

Figure 2b shows that 97% of the tests were performed on beams with ρsl between 

0.5% and 2% (Figure 2b). Furthermore, 95% of the tests were performed on beams with 

ρst less than 1.5% (Figure 2c). These ranges are recommended by ACI 445.1R [20] for the 

internal reinforcement to be under-reinforced in order to avoid a brittle failure by 

concrete crushing. Under-reinforced beams are capable of continued twist as the 

reinforcement yields, producing a ductile failure. Figure 2c also shows that the increase 

in ρst may reduce the effectiveness of the strengthening system. This phenomenon is due 

to the RC beams potentially becoming over-reinforced, leading to a brittle failure. 

Another possible explanation for this trend is the interaction between the internal 

transverse steel reinforcement and the external strengthening reinforcement, which has 

been reported for RC beams strengthened in shear with externally bonded composites 
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[21-24]. It is noted that only one (i.e., [11]) test was conducted with beams without 

internal transverse reinforcement (i.e., ρst = 0%), however, the largest increase in torsional 

strength was achieved by a beam without stirrups.  

  

3.2 COMPOSITE TYPES  

As discussed in Section 1, two different types of externally bonded composites 

have been studied for torsional strengthening of RC beams: FRP composites, in which the 

fiber is bonded to the concrete substrate by an epoxy resin, and FRCM composites, in 

which the bonding agent between the fibers and the concrete substrate is an inorganic 

material. Figure 3 shows the distribution of data in terms of composite type. The majority 

of the available data (88%) is with FRP composites, while only 12% of the available data 

is with FRCM composites. For the case of FRP composites, the use of carbon and glass 

fibers has been studied (70% and 18% of all tests, respectively), whereas PBO fiber is the 

only fiber type studied for the case of FRCM composites. Figure 3 shows that the largest 

increases in torsional strength were achieved with CFRP composites, however 

significantly more tests have been conducted with CFRP composite than other types.  

3.2.1 Wrapping Configuration. Torsion moment in unstrengthened RC beams is 

resisted by closed-loop stirrups due to the circulatory shear flow stresses that are induced 

by torsion. When a composite strengthening system is applied to the external surface of 

the beam, the composite fibers should form a closed-loop (4-sided wrapping) around the 

cross-section. In practice, however, a 4-sided wrapping configuration may not be possible 

to install if the complete perimeter of the beam is not accessible, such as in the case of a 

spandrel beam in monolithic construction. Therefore, the use of U-jackets (3-sided 
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wrapping) has been explored. In the case of U-jackets, the shear flow is not in the form of 

a closed-loop, and thus efficiency in improving the torsional strength compared to 

systems with closed-loop reinforcement is expected to be lower. Figure 4 shows that fully 

wrapped (4-sided) configurations were the most investigated (68%) and produced the 

largest increases in torsional strength. 

Continuity of the composite along the length of the RC beam has also been 

explored. Results in Figure 4 show that beams with continuous (along the beam length) 

strengthening configurations achieved larger increases Tu compared to discontinuous 

strips for both 4-sided and 3-sided wrapping configurations. Certainly continuous 

configurations have larger reinforcement ratios those discontinuous strips. However, 

continuity of fibers along the length of the beam also serves to arrest the concrete cracks 

and preventing them from widening. Furthermore, composite strip width and spacing 

influences the confinement provided to the concrete, which affects the post-cracking 

behavior [5]. 

3.2.2 Fiber Orientation. Several studies have investigated the effect of 

composite fiber orientation on the effectiveness of fiber reinforced composite 

strengthening systems. For the case of FRP composites, different authors [3-6,13] have 

investigated fibers oriented at 0°, 45°, and 90° with respect to the longitudinal axis of the 

beam. Only one study [16] has investigated different fiber orientations (namely 0°, 45°, 

and 90°) for FRCM composites.  These studies demonstrated that fiber direction has a 

significant influence on the torsional strength and rotational capacity of a strengthened 

RC beam.  
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Regarding distribution of data, Figure 5 shows most beams included in the 

database were wrapped with 90° fiber orientation (87%). Eight percent of beams were 

wrapped with 45° fiber orientation, while only 5% were wrapped with 0° fiber 

orientation. Although the results in Figure 5 show that the maximum increase in torsional 

strength was achieved by beams with 90° orientated fibers, the 45° fiber orientation is 

generally considered to be the most effective on increasing the torsional strength since 

the inclined fibers are oriented perpendicular to the concrete diagonal cracks. In fact, 

results of FRP-strengthened RC beams showed this to be the case [4-6]. However, no 

difference in rotational capacity between the 45° and 90° orientations was observed. For 

the case of FRCM composites, on the other hand, the 90° fiber orientation was found to 

be more effective in increasing the torsional strength than the 45° fiber orientation since 

premature debonding of the fibers occurred at the ends of the 45° strips, which contrasted 

the potential benefits from optimizing the fiber orientation and led to the underutilization 

of the composite [16]. Additional discussion on failure modes is presented in Section 4. 

Figure 5 shows that the 0° fiber orientation was not very effective for increasing the 

torsional strength of FRP- or FRCM-strengthened beams, however, is has been shown to 

be effective on increasing the cracking torque and post cracking twist by providing higher 

stiffness while keeping the width of the concrete cracks small [5]. Similarly, the study by 

He et al. [25] on FRP-strengthened RC columns determined that fibers oriented at 0° 

provided a minor contribute to the torsional strength of FRP-strengthened RC columns 

based on strain measurements in the longitudinal fibers. 

3.2.3 Composite Fiber Volumetric Ratio, Number of Layers, and Fiber 

Strain. Figure 6 shows the increase in torsional strength Tu as a function of the 
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volumetric ratio of the composite fiber reinforcement 𝜌𝜌𝑓𝑓 = 𝑛𝑛.𝑠𝑠𝑓𝑓.𝑝𝑝𝑓𝑓
𝐴𝐴𝑐𝑐

𝑤𝑤𝑓𝑓

𝑠𝑠𝑓𝑓
, the ultimate strain 

in the fiber 𝜀𝜀𝑓𝑓𝑓𝑓, and number of composite layers n, where tf is the thickness of the 

composite, wf is the width of the composite sheets, and sf is the center-to-center spacing 

of the applied composite sheets. Most (86%) of the tests were conducted with 𝜌𝜌𝑓𝑓 between 

0% and 0.5% (Figure 6a). The maximum increase in torsional strength was achieved for 

beams with 𝜌𝜌𝑓𝑓 between 0.5% and 1%, which had 2 layers of composite as shown in 

Figure 6b. The majority of tests were conducted on beams with one layer of composite 

(75%), 20% with two layers, and 5% of the tests with three layers. Although some higher 

increases in torsional strength occurred by increasing the number of layers from one to 

two, the effectiveness of the strengthening system appears to be reduced when a larger 

number of layers are provided. In other words, the increase in torsional strength may not 

be proportional to the number of composites layers. 83% of the tests investigated had 

fiber strain between 1% and 2% (Figure 6c), which was corresponds to values for carbon 

and PBO fibers.  

 

4. MODE OF FAILURE 

Failure of unstrengthened RC beams subjected to pure torsion is governed by 

concrete damage, which can be described as crushing of concrete struts and/or cover 

spalling. The same type of failure has been reported on the unstrengthened side of FRP-

strengthened beams with a U-jacketing configuration. However, the failure of beams with 

U-jackets was initiated by debonding or delamination of the composite strip at the most 

stressed region of the concrete-composite adhesive interface. In some cases, peeling of 
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the FRP strips (intermediate composite debonding, along the crack direction and at the 

crack location [113]) occurred before crushing of concrete struts, while slippage of the 

fiber in the cementitious matrix in the FRCM system occurred before failure [15] [16].  

Failure of beams with fully wrapped strips was governed by either crushing of 

concrete struts between the strips or fiber rupture. Rupture of the fiber occurred in fully 

wrapped beams when the fibers reached their tensile strength before crushing of concrete 

struts due to compression forces or excessive diagonal cracking associated with diagonal 

tension forces. In spite of two different strengthening systems using externally bonded 

composite sheets (FRP and FRCM), the mode of failure for each mentioned condition 

was the same in both systems.  

 

5. ANCHORAGE SYSTEM 

The failure mode associated with premature debonding or delamination of the 

composite from the substrate is an undesirable failure. This type of failure is often the 

result of an incomplete loop of the force transferring mechanism provided by the 

composite. In order to improve the composite fiber efficiency and the performance of the 

3-sided wrapped beams, anchorage systems were investigated in various forms, 

introduced by different researchers [6-7, 13-14]. For the case of FRP-strengthened beams, 

four types of anchorage systems have been used in an attempt to mitigate debonding of 

the composite from the concrete substrate: through rods, fasteners, steel angles with 

fasteners, and extended U-jackets for T-sections as shown in Figure 7. The results 

revealed that each technique is workable and effective for increasing the torsional 

strength and rotational capacity of FRP-strengthened beams. This improvement was due 
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to the shear flow in the anchors, which also delayed composite delamination [6]. This can 

be seen clearly in Figure 4, where the lower bound value in increasing the torsional 

strength of 3-sided strips with anchors is higher than the upper bound value of 3-sided 

strips without anchors. The same observation can be seen for 3-sided continuous with and 

without anchors.   

 

6. ANALYTICAL MODELS 

The torsional behavior of RC beams strengthened with external reinforcement is 

complex and not well understood. Furthermore, as discussed in Section 2, experimentally 

tested beams are limited, and additional investigations are needed to understand the 

complex behavior and to illustrate the contribution of different components (i.e. concrete, 

internal reinforcement, and external reinforcement) in terms of torsional strength and 

behavior. 

Different approaches have been used to analytically model the behavior of RC 

beams strengthened in torsion with externally bonded composites. In each approach, the 

same assumptions were adopted: torsion after cracking is resisted by truss action of 

compressive stresses in diagonal concrete struts and tensile stresses in the internal 

(longitudinal and transverse) and external reinforcement. Equilibrium and compatibility 

equations were implemented with the constitutive laws of an element taken from a 

member subjected to pure torsion, as shown in Figure 8, to obtain the torsional response. 

One of the first analytical models developed to evaluate the torsional capacity of 

FRP strengthened RC beams was introduced by Ameli and Ronagh [26]. The interaction 

of different components was considered by implementing the equilibrium and 
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compatibility equations throughout the loading regime, whereas the ultimate torque of the 

beam was calculated using the compression field theory (CFT). Reasonably accurate 

results were obtained from the analytical model. Deifalla and Ghobarah [27] developed 

an analytical model to predict the full torsional behavior of RC beams strengthened with 

FRP composite material based on the modified compression field theory (MCFT), the 

hollow tube analogy, and the compatibility at the corner of the cross section. This model 

took into account the composite wrapping scheme, even for the case where the FRP is not 

bonded to all beam faces, FRP contribution, and mode of failure. The analytical model 

results showed good agreement with the experimental results.  

Chalioris [28] introduced an analytical method to predict the full torsional 

behavior of RC beams strengthened with FRP composite material by employing two 

different theoretical models: a smeared crack model for plain concrete in torsion and a 

modified softened truss model which takes into account the contribution of the FRP 

composite. The proposed model was capable of describing the full torsional response 

with satisfactory accuracy and the cracking torque and torsional strength. Zojaji and 

Kabir [29] and Ganganagoudar et al. [30] introduced a modified softened membrane 

model (SMMT) for torsion with taking into account the influence of externally bonded 

FRP on the compressive behavior of cracked concrete. The model by Ganganagoudar et 

al. [30] considered the composite fiber rupture failure mode, while the model by Zojaji 

and Kabir [29] also included the composite debonding failure mode. Reasonably good 

agreement was achieved with the tested data.  

Chai et al. [31] proposed an analytical method to predict the torsional capacity 

and behavior of RC multi-cell box girders strengthened with CFRP sheets based on the 
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extension and modification of the space truss model for torsion (STMT) algorithm. Good 

agreement between the proposed method and the experimental results was achieved. Shen 

et al. [32] proposed an analytical model based on the modification of the classical 

rotating angle softened truss model (RA-STM) for torsion to predict the full torsional 

behavior of RC beams externally wrapped with FRP composite material with considering 

the influence of the tensile stress in concrete and the effect of FRP confinement on 

torsional behavior. Good agreement between the analytical and experimental results 

indicated the applicability of the analytical model for predicting the torsional behavior of 

RC beams strengthened with FRP materials both at the pre-cracking and post-cracking 

stages. 

The authors of the analytical studies described above tested the validity of their 

model by comparing the analytical results with experimental results from other studies. 

Table 2 summarizes the experimental tests used in the comparison (rows in the table) for 

each analytical study (columns in the table). Results were compared in terms of cracking 

torsional moment Tcr and/or torsional strength Tu. The comparison of analytical and 

experimental results is listed in Table 2.  

 

7. NUMERICAL STUDIES 

The torsional response of externally bonded fiber reinforced composite 

strengthened RC beams has been investigated using numerical simulation. Hii and Al-

Mahaidi [8] implemented the nonlinear finite element program DIANA [33] to model 

CFRP-strengthened RC beams with solid and box sections under torsional loading. Good 

agreement in terms of torque–twist behavior, steel and CFRP reinforcement responses, 
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crack patterns, and mode of failure was achieved. Ameli et al. [9] modeled CFRP or 

GFRP-strengthened RC beams with a rectangular cross-section with the nonlinear finite 

element program ANSYS [34]. The results from modeled beams were in a reasonable 

agreement with the experimental data. Ganganagoudar et al. [30] used a nonlinear finite 

element program ABAQUS [35] to model full scale, RC beams strengthened with FRP 

composite material. A reasonably good agreement was achieved between the predicted 

and the experimental results. Elwan [36] use the nonlinear finite element program 

ANSYS [34] to conduct a parametric study on the effect of volumetric ratio of composite, 

number of composite layers, composite strength, and U-jacket configuration on the 

torsional behavior of FRP-strengthened rectangular and T-shaped RC beams. 

Alabdulhady et al. [37] modeled PBO-FRCM-strengthened RC beams with a rectangular 

cross-section by using a nonlinear finite element program LS-DYNA [38]. Good 

agreement was achieved between the experimental and the predicted results of the model 

for the full torsional response. Furthermore, a parametric study was conducted on the 

effect of concrete compressive strength, FRCM composite strip width, and strip spacing 

on the torsional behavior and strength. Table 3 summarizes a comparison of FE and 

corresponding experimental results of these studies in terms of cracking torsional 

moment Tcr and torsional strength Tu. 

 

8. MODELS FOR COMPUTING THE CONTRIBUTION OF THE COMPOSITE 
      TO THE TORSIONAL STRENGTH 
 

Fib [39] and NCHRP Report 655 [40] are currently the only guides applicable to 

the design of FRP composites for torsional strengthening, whereas no provisions exist for 



www.manaraa.com

21 
 

the design of FRCM composites for torsional strengthening. In the Fib and NCHRP 

guides, the contribution of the externally bonded composite system Tf  is considered 

additive to the torsional strength of the unstrengthened RC beam TRC as indicated in 

Equation 1. In this section, this approach is examined using the experimental data from 

the database in Table 1 in an attempt to evaluate the effective strain in the composite 

corresponding to the torsional strength of the member. 

                                        𝑇𝑇𝑓𝑓 = 𝑇𝑇𝑓𝑓 − 𝑇𝑇𝑅𝑅𝑅𝑅                                                               (1) 

Salom et al. [6] and Hii and Al-Mahaidi [10] assumed that the composite around 

the perimeter of the beam behaves similarly to closed stirrups. Therefore, the torsional 

contribution from the composite can be calculated from Equation 2, which is similar to 

the equation for computing the torsional capacity of unstrengthened beams by the ACI 

code [41]. 

                                   𝑇𝑇𝑓𝑓 = 2𝐴𝐴0𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑠𝑠𝑓𝑓

(𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃)                                            (2) 

where: A0 is gross area enclosed by the shear flow path within the composite, 𝐴𝐴𝑓𝑓 = 𝑠𝑠𝑤𝑤𝑓𝑓𝑡𝑡𝑓𝑓  

is the area of the composite, 𝑓𝑓𝑓𝑓𝑓𝑓 = 𝜀𝜀𝑓𝑓𝑓𝑓𝐸𝐸𝑓𝑓 is the effective stress in the composite, εfe is the 

effective strain in the composite, Ef is the modulus of elasticity of the composite fibers, 𝜃𝜃 

is the angle between the fiber orientation and the longitudinal axis of the beam, and sf is 

the center-to-center spacing of the composite strip along the longitudinal axis.  

By substitution of terms, Equation 2 can be rewritten as: 

                                  𝑇𝑇𝑓𝑓 = 2. 𝜀𝜀𝑓𝑓𝑓𝑓 .𝐸𝐸𝑓𝑓 .𝑏𝑏.ℎ. 𝑠𝑠𝑓𝑓.𝑤𝑤𝑓𝑓

𝑠𝑠𝑓𝑓
𝑐𝑐𝑐𝑐𝑡𝑡 (𝜃𝜃)                                         (3) 

 

 



www.manaraa.com

22 
 

For beams strengthened with U-jacket configurations with anchors, 

Panchacharam and Belarbi [5], recommended that a reduced value of Tf  be considered in 

accordance with Equation 4: 

                                        𝑇𝑇𝑓𝑓 = 𝜀𝜀𝑓𝑓𝑓𝑓 .𝐸𝐸𝑓𝑓 . 𝑏𝑏.ℎ. 𝑠𝑠𝑓𝑓.𝑤𝑤𝑓𝑓

𝑠𝑠𝑓𝑓
𝑐𝑐𝑐𝑐𝑡𝑡 (𝜃𝜃)                                       (4) 

According to Equations 3 and 4, provisions for torsional strengthening RC beams 

with externally bonded fiber reinforced composites require an estimation of the effective 

strain in the composite fibers 𝜀𝜀𝑓𝑓𝑓𝑓 to design the strengthening system. For the case of FRP 

composites, this value is recommended as 𝜀𝜀𝑓𝑓𝑓𝑓 =0.004 [40]. On the other hand, if the 

contribution of the composite to the torsional strength is known from Equation 1, the 

effective strain in the fiber can be calculated from Equation 3.  

To examine the validity of the aforementioned approach, the contribution of the 

composite to the torsional strength of the beams in Table 1 was estimated from Equation 

1 (Tf,test) and then compared with the value computed from strains measured in the 

composite fibers at the ultimate strength of the beam (Tf,pred). This approach was also 

used by Alabdulhady et al. [15] to estimate the contribution of the FRCM composite for 

beams with a 4-sided wrapping configuration by considering the maximum measured 

strain in the fibers corresponding to the torsional strength. The predicted 𝑇𝑇𝑓𝑓,𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝. versus 

the experimental Tf (Equation 1) are shown in Figure 9.  

It should be noted that not all tests in Table 1 are included in Figure 9. Only 50% 

of the studies reported values of fiber strains (i.e. [4, 6-8, 10-12, 15-16]), and therefore, 

only tests from these studies are shown in the figure. Figure 9 shows that the majority of 

the data have higher predicted strengths, which means that this approach overestimates 
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the contribution of the composite to the torsional strength. This supports the need for a 

maximum value of the effective strain used in design, which is currently taken at 0.004 

for FRP composites. More work is needed to determine a suitable limit for the effective 

strain for the case of FRCM composites.  

 

9. CONCLUSIONS 

This paper provided a comprehensive review of the existing studies on torsional 

strengthening of RC beams with externally bonded composites. Evaluation of the 

experimental database, methods of strengthening, mode of failure, anchorage system, the 

accuracy of existing analytical and FE models, and code provisions were discussed in this 

paper. The important conclusions from this study are listed below: 

1. The experimental evidence showed that externally bonded composite materials 

can be used to increase the torsional strength of RC beams. For the beams 

included in the database, the increase in torsional strength varied from 0% to 

178% with an average of 51%. 

2. U-jacketing (3-sided) and fully wrapped (4-sided) strengthening configurations 

were the most heavily investigated configurations. 

3. Fibers with 0°, 45°, and 90° directions have been investigated. Beams wrapped 

with 45° fiber orientation was the most effective on increasing the torsional 

strength, while fibers with 0° had the least contribution to the torsional strength. 

However, fibers with 0° orientations increased the cracking torsional moment. 
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4. Continuity of the composite along the beam proved to be more effective than 

discrete strips due to the effect of fiber continuity on arresting the cracks and 

preventing them from widening. 

5. Failure of beams strengthened with U-jacketing configurations was governed by 

concrete damage. Failure of beams with fully wrapped strips was dominated by 

either crushing of concrete struts between the strips or composite fiber rupture. 

Rupture of the fiber governed the failure of beams with fully wrapped, continuous 

composite. 

6. Different forms of anchorage systems have been investigated such as anchor bars, 

composite fastened to the top of the beam for rectangular sections, steel angles, 

and extended U-jacket for T-sections, to overcome debonding of the composite 

from the concrete substrate. These techniques have proven to be effective for 

increasing the torsional strength and rotational capacity of FRP-strengthened 

beams. Additional work is needed to study anchorage of FRCM-strengthened 

beams. 

7. Analytical studies have been conducted to predict the full torsional response of 

RC beams strengthened with FRP composite material by implementing different 

approaches including the compression field theory (CFT), softened membrane 

model for torsion (SMMT), and space truss model for torsion (STMT).  

8. Nonlinear finite element programs such as DIANA, ANSYS, ABAQUS, and LS-

DYNA have been used to numerically model the response of RC beams 

strengthened with externally bonded FRP and FRCM composites subjected to 

torsion.  
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9. Provisions used to estimate the torsional strength of RC beams with externally 

bonded composite sheets are applicable for designing or analyzing such beams, 

with acceptable tolerance.    

 

10. RECOMMENDATIONS 

To better understand the torsional behavior of RC beams with externally bonded 

composites, additional work is needed in the following areas: 

1. Very few studies have investigated the behavior of RC beams strengthened with 

fibers orientated at angles other than 90°. Additional studies are needed to 

examine the effect of fiber orientation on the torsional response of strengthened 

beams.  

2. Experimental studies on large- or full-scale RC beams are extremely limited. 

Additional investigation is needed to examine potential size effects. 

3. Very few studies exist on torsional strengthening with FRCM composite. 

Additional work is needed to explore the response of FRCM-strengthened beams 

with different fiber types.  

4. Additional investigation is needed to develop suitable anchorage systems that 

could improve the torsional capacity of FRCM-strengthened beams with 3-sided 

wrapping configurations.  

5. Analytical models on the full torsional response of FRCM-strengthened beams are 

in need of development.  
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6. Although design provisions exist for designing externally bonded FRP 

strengthening systems, provisions are needed for other composite types including 

FRCM composites. 

7. More investigations are needed for RC beams strengthened with new composite 

systems such as steel reinforced polymer (SRP) and steel reinforced grout (SRG). 
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Table 1. Experimental database.  
 Cross-section Concrete Internal reinf. Composite Results 

Ref. Beam name Shape b 
(mm) 

h 
(mm) f'c (MPa) ρsl 

(%) 
ρst 

(%) 
Composite 

type Layout n wf 
(mm) 

sf 
(mm) 

Ef 
(GPa) 

ff 
(MPa) 

ρf. 
(%) Anchors % Increase 

in Tu Failure mode 

[3] 

L2 R/s 150 250 21.2 0.837 0.462 CFRP 4-sided 90°S 1 60 120 287 3269 0.118 No 41.0 R 
L3 R/s 150 250 21.2 0.837 0.462 CFRP 4-sided 90°S 3 60 120 287 3269 0.355 No 75.0 CC 
L4 R/s 150 250 23.7 0.837 0.462 CFRP 4-sided 90°S 1 60 120 287 3269 0.118 No 88.0 R 
L5 R/s 150 250 23.7 0.837 0.462 CFRP 4-sided 90°S 3 60 120 287 3269 0.355 No 80.0 CC 
L6 R/s 150 250 23.7 0.837 0.462 CFRP 4-sided 90°S 1 60 150 287 3269 0.095 No 56.0 R 
L7 R/s 150 250 23.7 0.837 0.462 CFRP 4-sided 90°S 3 60 150 287 3269 0.284 No 64.0 CC 
L8 R/s 150 250 23.7 0.837 0.462 CFRP 2-sided 0°S 1 60 70 287 3269 0.076 Yes 12.0 CC 
L9 R/s 150 250 23.7 0.837 0.462 CFRP 2-sided 0°S 1 60 170 287 3269 0.052 Yes 16.0 CC 

L10 R/s 150 250 21.2 0.837 0.46 CFRP 2-sided 0°S/4-sided 
90°S 3 60 120 287 3269 0.222 Yes 80.0 R 

[4] 

C1 R/s 150 350 37 1.148 0.644 CFRP 4-sided 90°C 1 1 1 252 4300 0.314 No 63.2 D 
C2 R/s 150 350 37 1.148 0.644 CFRP 4-sided 90°S 1 100 200 252 4300 0.157 No 26.7 CC 
C3 R/s 150 350 37 1.148 0.644 CFRP 1-side 45°S 1 100 170 252 4300 0.065 No 11.6 CC 
C4 R/s 150 350 37 1.148 0.644 CFRP 4-sided 90°S 1 200 300 252 4300 0.210 No 43.7 CC 
C5 R/s 150 350 37 1.148 0.644 CFRP 4-sided 90°S 1 100 250 252 4300 0.126 No 21.8 CC 
C6 R/s 150 350 37 1.148 0.376 CFRP 4-sided 45°S 1 100 230 252 4300 0.137 No 54.5 R 
G1 R/s 150 350 37 1.148 0.644 GFRP 4-sided 90°C 1 1 1 87 1317 0.672 No 71.9 D 
G2 R/s 150 350 37 1.148 0.644 GFRP 4-sided 90°S 1 100 200 87 1317 0.336 No 19.4 CC 

[5] 

A90W4 S/s 279.4 279.4 34 1.025 0.537 GFRP 4-sided 90°C 1 1 1 72 1520 0.220 No 149.0 R 
A90S4 S/s 279.4 279.4 34 1.025 0.537 GFRP 4-sided 90°S 1 114.3 228.6 72 1520 0.110 No 90.0 CC 
A0L4 S/s 279.4 279.4 34 1.025 0.537 GFRP 4-sided 0°C 1 1 1 72 1520 0.220 No 62.0 P 
A0L3 S/s 279.4 279.4 34 1.025 0.537 GFRP 3-sided 0°C 1 1 1 72 1520 0.165 No 43.0 P 

B0L4/90S4 S/s 279.4 279.4 26 1.025 0.537 GFRP 4-sided 0°C/90°S 2 114.3 228.6 72 1520 0.220 No 96.0 P 
B90U3-Anch S/s 279.4 279.4 26 1.025 0.537 GFRP 3-sided 90°S 1 1 1 72 1520 0.165 Yes 39.0 CC 

C90U3 S/s 279.4 279.4 31 1.025 0.537 GFRP 3-sided 90°C 1 1 1 72 1520 0.165 No 35.0 CS 

[6] 

TB2 L/s 203 305 55 1.781 1.615 CFRP 3-sided 0°/90°C 2 1 1 104 NR 2.846 No 35.2 d 
TB3 L/s 203 305 55 1.781 1.615 CFRP 3-sided +45°/-45°C 2 1 1 104 NR 2.846 Yes 77.9 d 
TB4 L/s 203 305 55 1.781 1.615 CFRP 3-sided 0°/90°C 2 1 1 104 NR 2.846 Yes 52.9 CC 
TB5 L/s 203 305 55 1.781 1.615 CFRP 3-sided 90°C 1 1 1 104 NR 1.423 Yes 46.3 d 

[7] 
[8] 
[10] 

FS050D2 R/s 350 500 56.4 0.628 0.203 CFRP 4-sided 90°S 2 50 300 240 3800 0.057 No 49.2 R 
FH075D1 R/h 350 500 48.9 2.749 0.203 CFRP 4-sided 90°S 1 50 425 240 3800 0.020 No 36.7 R 
FH050D1 R/h 350 500 56.4 2.749 0.203 CFRP 4-sided 90°S 1 50 300 240 3800 0.028 No 51.5 R 
FH050D2 R/h 350 500 52.8 2.749 0.203 CFRP 4-sided 90°S 2 50 300 240 3800 0.057 No 77.6 R 

[9] 

CFE R/s 150 350 39 1.532 0.530 CFRP 4-sided 90°C 1 1 1 244 3943 0.314 No 87.0 R 
CFE2 R/s 150 350 39 1.532 0.530 CFRP 4-sided 90°C 2 1 1 244 3943 0.629 No 143.0 R 
CJE R/s 150 350 39 1.532 0.530 CFRP 3-sided 90°C 1 1 1 244 3943 0.267 No 33.0 D 
CFS R/s 150 350 39 1.532 0.530 CFRP 4-sided 90°S 1 100 200 244 3943 0.157 No 45.0 R 
CJS R/s 150 350 39 1.532 0.530 CFRP 3-sided 90°S 1 100 200 244 3943 0.134 No 16.0 D 
GFE R/s 150 350 36 1.532 0.530 GFRP 4-sided 90°C 1 1 1 73 3373 0.293 No 78.0 R 

GFE2 R/s 150 350 36 1.532 0.530 GFRP 4-sided 90°C 2 1 1 73 3373 0.587 No 110.0 R 
GJE R/s 150 350 36 1.532 0.530 GFRP 3-sided 90°C 1 1 1 73 3373 0.249 No 32.0 D 
GFS R/s 150 350 36 1.532 0.530 GFRP 4-sided 90°S 1 100 200 73 3373 0.147 No 34.0 R 
GJS R/s 150 350 36 1.532 0.530 GFRP 3-sided 90°S 1 100 200 73 3373 0.125 No 14.0 D 

[11] 

Ra-F(1) R/s 100 200 27.5 1.005 0 CFRP 4-sided 90°C 1 1 1 230 3900 0.330 No 103.8 R 
Ra-F(2) R/s 100 200 27.5 1.005 0 CFRP 4-sided 90°C 2 1 1 230 3900 0.660 No 178.4 R 

Ra-Fs150(2) R/s 100 200 27.5 1.005 0 CFRP 4-sided 90°S 2 150 300 230 3900 0.330 No 26.3 CC 
Rb-F(1) R/s 150 300 28.8 0.447 0 CFRP 4-sided 90°C 1 1 1 230 3900 0.220 No 44.6 R 
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Rb-Fs200(1) R/s 150 300 28.8 0.447 0 CFRP 4-sided 90°S 1 200 400 230 3900 0.110 No 34.0 CC 
Rb-Fs300(1) R/s 150 300 28.8 0.447 0 CFRP 4-sided 90°S 1 300 600 230 3900 0.110 No 8.2 CC 

T-FU(1) T/s 150 300 26.5 0.670 0 CFRP 3-sided 90°C 1 1 1 230 3900 0.136 No 6.0 D 
T-FU(2) T/s 150 300 26.5 0.670 0 CFRP 3-sided 90°C 2 1 1 230 3900 0.272 No 11.4 D 

[12] 

ACS1 R/s 150 350 74.39 0.598 0.938 CFRP 4-sided 90°S 1 100 200 240 3800 0.168 No 9.9 D 
ACUJ-anc. R/s 150 350 72.67 0.598 0.938 CFRP 3-sided 90°C 1 1 1 240 3800 0.285 Yes 52.7 R 

ACW1 R/s 150 350 73.18 0.598 0.938 CFRP 4-sided 90°C 1 1 1 240 3800 0.335 No 48.5 R 
ACW2 R/s 150 350 73.24 0.598 0.938 CFRP 4-sided 90°C 2 1 1 240 3800 0.670 No 75.3 R 
BCS1 R/s 150 350 78.52 1.173 0.938 CFRP 4-sided 90°S 1 100 200 240 3800 0.168 No 9.6 R 

BCUJ-anc. R/s 150 350 80.56 1.173 0.938 CFRP 3-sided 90°C 1 1 1 240 3800 0.285 Yes 59.5 R 
BCW1 R/s 150 350 78.12 1.173 0.938 CFRP 4-sided 90°C 1 1 1 240 3800 0.335 No 57.6 R 
BCW2 R/s 150 350 74.95 1.173 0.938 CFRP 4-sided 90°C 2 1 1 240 3800 0.670 No 92.6 R 
CCW1 R/s 150 350 73.33 1.532 1.459 CFRP 4-sided 90°C 1 1 1 240 3800 0.335 No 65.1 R 
CCW2 R/s 150 350 74.43 1.532 1.459 CFRP 4-sided 90°C 2 1 1 240 3800 0.670 No 111.8 R 

[13] 

RB1ER6-50 R/s 150 350 25 1.005 0.545 CFRP 4-sided 90°S 1 50 200 NR 700 0.070 No 17.0 P 
RB1ER6-100 R/s 150 350 25 1.005 0.545 CFRP 4-sided 90°S 1 100 200 NR 700 0.130 No 34.0 P 

LB1ER2 L/s 150 350 25 1.056 0.348 CFRP 3-sided 90°S 1 100 200 NR 700 0.100 Yes 41.7 CC 
LB1ER3 L/s 150 350 25 1.056 0.348 CFRP 3-sided 45°S 1 100 200 NR 700 0.100 No 25.0 D 
LB1ER4 L/s 150 350 25 1.056 0.348 CFRP 3-sided 90°S 1 100 200 NR 700 0.100 Yes 58.3 CC 
LB1ER7 L/s 150 350 25 1.056 0.348 CFRP 4-sided 90°S 1 100 200 NR 700 0.100 No 83.3 CC 
TB1ER1 T/s 120 400 25 1.446 0.571 CFRP 3-sided 90°S 1 100 200 NR 700 0.140 No 30.2 D 
TB1ER5 T/s 120 400 25 1.446 0.571 CFRP 3-sided 90°S 1 100 200 NR 700 0.140 Yes 64.1 D 

[14] ST-S R/h 250 350 45 1.645 0.332 CFRP 4-sided 90°S 1 100 200 230 4900 0.097 No 22.9 R 
ST-T R/h 750 350 43 1.645 0.214 CFRP 4-sided 90°S 1 100 200 230 4900 0.060 No 21.7 R 

[15] 
[16] 

N-P-3-S-1 R/s 203.2 304.8 39.3 1.290 0.92 PBO-FRCM 3-sided 90°S 1 101.6 203.2 206 3015 0.030 No 7.8 CC 
N-P-3-45S-1 R/s 203.2 304.8 34.5 1.290 0.92 PBO-FRCM 3-sided 45°S 1 101.6 203.2 206 3015 0.030 No 0.0 CC 
N-P-3-C-1 R/s 203.2 304.8 34.5 1.290 0.92 PBO-FRCM 3-sided 90°C 1 1 1 206 3015 0.060 No 0.8 CC 
N-P-4-S-1 R/s 203.2 304.8 39.3 1.290 0.92 PBO-FRCM 4-sided 90°S 1 101.6 203.2 206 3015 0.038 No 29.9 R 

N-P-4-45S-1 R/s 203.2 304.8 34.5 1.290 0.92 PBO-FRCM 4-sided 45°S 1 101.6 203.2 206 3015 0.038 No 17.6 D 
N-P-4-8S-1 R/s 203.2 304.8 34.5 1.290 0.92 PBO-FRCM 4-sided 90°S 1 203.2 304.8 206 3015 0.038 No 28.6 R 
N-P-4-0C-1 R/s 203.2 304.8 34.5 1.290 0.92 PBO-FRCM 4-sided 0°C 1 1 1 206 3015 0.075 No 7.7 D 
N-P-4-C-1 R/s 203.2 304.8 39.3 1.290 0.92 PBO-FRCM 4-sided 90°C 1 1 1 206 3015 0.075 No 61.7 R 

N-P-4-(0/90)C-2 R/s 203.2 304.8 34.5 1.290 0.92 PBO-FRCM 4-sided 90°C 2 1 1 206 3015 0.151 No 79.1 D 
N-P-4-C-2 R/s 203.2 304.8 39.3 1.290 0.92 PBO-FRCM 4-sided 90°C 2 1 1 206 3015 0.151 No 108.9 R 

Beam shape: R/s=rectangular/solid, S/s=square/solid, L/s=L-shaped/solid, R/h= rectangular/hollow, T/s= T-shaped/solid. 
Composite fiber type: C=carbon, G=glass 
Layout: Angle reported is relative to the beam longitudinal axis. C=continuous, S=strip.  
Failure mode: D=composite debonding, CC=concrete crushing, R=composite fiber rupture, P=composite peeling, CS=concrete cover spalling, d=composite delamination. 
NR=not reported. 
% increase in Tu is relative to the corresponding unstrengthened (control) beam. 

 

 
 
 
 
 
 

 

Table 1. Experimental database (continued). 
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Table 2. Comparison of analytical and experimental results. 

Ref. Beam name 

Ameli and Ronagh 
[26] 

Deifalla and 
Ghobarah [27] Chalioris [28] Zojaji and Kabir [29] Ganganagoudar et 

al. [30] Chai et al. [31] Shen et al. [32] 

Tcr,ANA. 
/Tcr,exp. 

Tu,ANA. 
/Tu,exp. 

Tcr,ANA. 
/Tcr,exp. 

Tu,ANA. 
/Tu,exp. 

Tcr,ANA. 
/Tcr,exp. 

Tu,ANA. 
/Tu,exp. 

Tcr,ANA. 
/Tcr,exp. 

Tu, ANA . 
/Tu,exp. 

Tcr,ANA. 
/Tcr,exp. 

Tu, ANA . 
/Tu,exp. 

Tcr,ANA. 
/Tcr,exp. 

Tu,ANA. 
/Tu,exp. 

Tcr,ANA. 
/Tcr,exp. 

Tu,ANA. 
/Tu,exp. 

[11] 

Ra-FC(1) -- -- -- -- 0.83* 0.93* -- -- -- -- -- -- -- -- 
Ra-FC(2) -- -- -- -- 0.82* 0.83* -- -- -- -- -- -- -- -- 

Ra-FS150(2) -- -- -- -- 1.04* 1.06* -- -- -- -- -- -- -- -- 
RaS-

FS150(2) -- -- -- -- 0.99* 1.02* 0.93 1.01 -- -- -- -- 0.78 0.91 

Rb-FC(1) -- -- -- -- 0.82* 1.04* -- -- -- -- -- -- -- -- 
Rb-FS200(1) -- -- -- -- 1.06* 0.95* -- -- -- -- -- -- -- -- 
Rb-FS300(1) -- -- -- -- 1.03* 1.18* -- -- -- -- -- -- -- -- 

RbS-
FS200(1) -- -- -- -- 1.04* 0.99* 1.03 1.3 -- -- -- -- -- -- 

[9] 

CFE -- 0.83 -- -- 0.99* 0.90* 1.09 0.85 1.00 0.84* -- -- -- -- 
CFE2 -- 0.72 -- -- 0.96* 0.83* 1.01 0.77 -- -- -- -- -- -- 
CJE -- -- -- -- 0.97* 0.94* -- -- -- -- -- -- -- -- 
CFS -- 1.00 -- -- 1.00* 1.02* 1.03 0.92 0.89 0.91 -- -- 0.88 1.02 
CJS -- -- -- -- 1.01* 0.93* -- -- -- -- -- -- -- -- 
GFE -- 0.75 -- -- 0.98* 0.93* 1.08 0.92 -- -- -- -- 0.86 0.81 

GFE2 -- 0.68 -- -- 0.91* 0.95* -- -- -- -- -- -- -- -- 
GJE -- -- -- -- 0.93* 0.96* -- -- -- -- -- -- -- -- 
GFS -- 0.97 -- -- 0.91* 1.01* 1.01 1.01 -- -- -- -- 1.01 1.05 
GJS -- -- -- -- 0.96* 0.94* -- -- -- -- -- -- -- -- 

[5] 

A90W4 -- -- -- 0.74 1.18* 0.99* 1.11 0.94 1.00 0.93* -- -- -- -- 
A90S4 -- -- -- 1.13 1.23* 1.03* 1.05 1.01 0.95 0.96* -- -- 0.90 1.12 
C90U3 -- -- -- 1.38 1.22* 1.18* 0.91 1.10 -- -- -- -- -- -- 

B90U3-Anch -- -- -- 1.14 1.03* 1.16* -- -- -- -- -- -- -- -- 
A0L4 -- -- -- -- 1.00* 1.01* 0.95 1.13 -- -- -- -- -- -- 
A0L3 -- -- -- -- 1.04* 1.04* 1.28 1.11 -- -- -- -- -- -- 

B0L4/90S4 -- -- -- 1.07 0.99* 1.04* -- -- -- -- -- -- 0.77 0.96 

[4] 

C1 -- 0.92 -- 1.11 0.92* 1.09* 1.26 1.05 -- -- -- -- 1.41 1.20 
C2 -- 1.13 -- 1.41 1.12* 1.19* 1.37 1.14 -- -- -- -- -- -- 
C4 -- -- -- 1.03 0.94* 1.10* 1.16 1.00 -- -- -- -- -- -- 
C5 -- -- -- 1.48 1.05* 1.19* 1.29 1.17 -- -- -- -- -- -- 
C6 -- -- -- 1.15 -- -- -- -- -- -- -- -- -- -- 
G1 -- 0.81 -- 1.22 0.86* 0.97* 1.03 1.06 -- -- -- -- -- -- 
G2 -- 1.12 -- 1.56 0.98* 1.25* 1.21 1.21 -- -- -- -- -- -- 

[7] 
[8] 
[10] 

FS050D2 -- -- -- -- 1.04* 0.99* 0.91 0.94 -- -- -- -- 0.99 1.03 

FH050D2 -- -- -- -- -- -- 1.31 0.91 -- -- -- -- -- -- 
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[3] 

L2 -- -- -- 1.45 -- -- -- -- -- -- -- -- -- -- 
L3 -- -- -- 0.89 -- -- -- -- -- -- -- -- -- -- 
L4 -- -- -- 0.67 -- -- -- -- -- -- -- -- -- -- 
L5 -- 1.16 -- 0.86 -- -- -- -- -- -- -- -- -- -- 
L6 -- 1.16 -- 1.03 -- -- -- -- -- -- -- -- -- -- 
L7 -- -- -- 0.93 -- -- -- -- -- -- -- -- -- -- 

L10 -- -- -- 1.02 -- -- -- -- -- -- -- -- -- -- 

[31] ST-S -- -- -- -- -- -- -- -- -- -- -- 0.95 -- -- 
ST-T -- -- -- -- -- -- -- -- -- -- -- 0.99 -- -- 

* represents [1/ (Texp, /TANA.)] from the original reference. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
  
 

 

Table 2. Comparison of analytical and experimental results (continued). 
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Table 3. Comparison of FE and experimental results. 

Ref. Beam name Tcr,FE./Tcr,exp. Tu,FE./Tu,exp. 

[8] 
CS1 0.73 -- 
CH1 1.31 -- 

FH050D2 -- 0.77 

[9] 

RC -- 0.98 
CFE -- 0.92 
CFE2 -- 0.89 
CJE -- 0.99 
CFS -- 1.00 
CJS -- 1.04 
RG -- 0.96 
GFE -- 0.90 
GFE2 -- 0.85 
GJE -- 0.98 
GFS -- 1.05 
GJS -- 1.05 

[30] 

A90W4 0.93* 0.83* 
A90S4 0.70* 0.62* 
CFE 1.00* 1.09* 
CFS 1.03* 0.88* 

[36] 

CR -- 0.93* 
WR1 -- 0.82* 
WR2 -- 0.90* 
CT -- 1.18* 

WT1(U-jacket) -- 0.91* 
WT2(Ex. U-jacket) -- 0.82* 

[37] 

Control -- 1.02 
N-P-4-S-1 -- 1.11 
N-P-4-8S-1 -- 1.18 
N-P-4-C-1 -- 0.99 

N-P-4-(0/90)C-2 -- 1.05 
N-P-4-C-2 -- 0.94 

* Value reported is [1/ (Texp, /TFE)] from the original reference. 
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Figure 1. Wrapping configuration of strengthened beams. 
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Figure 2. Increase in torsional strength Tu versus (a) f’c, (b) 𝜌𝜌𝑠𝑠𝑠𝑠, and (c) 𝜌𝜌𝑠𝑠𝑠𝑠. 

 

 

(a) (b) 

(c) 



www.manaraa.com

34 
 

 

Figure 3. Increase in torsional strength Tu versus composite type. 

 

 

 

Figure 4. Increase in torsional strength Tu for different strengthening configurations. 
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Figure 5. Increase in torsional strength Tu versus fiber orientation. 
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Figure 6. Increase in torsional strength Tu versus (a) 𝜌𝜌𝑓𝑓, (b) 𝜀𝜀𝑓𝑓𝑓𝑓, and (c) n. 

 

 

 

 

 

 

 

 

(a) (b) 

(c) 



www.manaraa.com

37 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Anchorage system types (a) anchor bar, (b) composite fastened to the top of the 
beam for rectangular section, (c) steel angle, (d) extended u-jacket for T-section. 

 
 

(a) (b) 

(c) (d) 
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Figure 8. (a) Torsional deformation of a FRP strengthened RC beam, (b) in-plane stresses 
of an element taken from shear flow zone (adapted from [29]). 

 

 

Figure 9. Tf,test versus Tf,pred. 
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II. TORSIONAL BEHAVIOR Of RC BEAMS STRENGTHENED WITH PBO-
FRCM COMPOSITE – AN EXPERIMENTAL STUDY 

 
Meyyada Y. Alabdulhady, Lesley H. Sneed, and Christian Carloni 

 
ABSTRACT 

The use of fiber reinforced cementitious matrix (FRCM) composites has been 

studied for flexural and shear strengthening of reinforced concrete (RC) members, but 

currently there are no studies on its use for torsional strengthening. This paper presents 

the results of an experimental study in which solid rectangular RC beams were externally 

strengthened with PBO-FRCM composite material in different wrapping configurations 

to investigate the torsional behavior in terms of strength, rotational ductility, and failure 

mode. Increases in the cracking torque, torsional strength, and corresponding values of 

twist were achieved by beams strengthened with a 4-sided wrapping configuration 

relative to the control (unstrengthened) beam. On the other hand, the 3-sided wrapping 

configuration was found to be largely ineffective in improving the torsional performance 

due to excessive fiber slippage. The contribution of the strengthening system to the 

torsional strength was reasonably predicted (+/- 20%) by the strain measured in the 

composite fibers. Provisions used to estimate the torsional strength of RC beams with 

fully-wrapped, externally-bonded fiber reinforced polymer (FRP) composites were found 

to be applicable to beams strengthened with PBO-FRCM composite. 
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HIGHLIGHTS 

• RC beams were strengthened with PBO-FRCM composite and tested under 

torsion.  

• Behavior was investigated in terms of strength, rotational ductility, failure mode. 

• Strains measured in the internal and external reinforcement were evaluated. 

• Analytical prediction was compared with the experimental results. 

• Effectiveness of PBO-FRCM composite was compared with CFRP and GFRP 

composites. 

 

KEYWORDS 

Beams, fiber strain, PBO-FRCM composite, reinforced concrete, strengthening, torsion. 

 

1. INTRODUCTION 

In recent decades, repair and strengthening of reinforced concrete (RC) buildings 

and bridges have become increasingly common. Deficiencies in RC members may exist 

for several reasons, including changes in use of the structure, design and constructions 

errors, and degradation due to environmental conditions. RC members are commonly 

strengthened in flexure, shear, and/or confinement depending on the member loading 

conditions and type of enhancement needed. In some cases, RC members are subjected to 

significant torsional moments, and the torsional strength needs to be enhanced. 

Accordingly, methods and design provisions for strengthening RC members in torsion are 

needed. 
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Torsional behavior of RC beams strengthened with externally bonded fiber 

reinforced polymer (FRP) composites has been investigated since the early 2000s.  

Ghobarah et al. [1] investigated the behavior of RC beams with a rectangular cross-

section strengthened with carbon FRP (CFRP) or glass FRP (GFRP) composite, and a 

simple design approach was also introduced. Panchacharam and Belarbi [2] studied the 

behavior of RC beams with a square cross-section strengthened with GFRP composite 

and proposed an analytical design equation. Salom et al. [3] tested RC beams with an L-

shaped cross-section strengthened by CFRP composite to study the effectiveness of this 

technique on increasing the torsional strength of spandrel beams. Hii and Al-Mahaidi [4] 

used photogrammetry measurements to prove that externally bonded CFRP composite 

improves the torsional strength of RC beams by limiting crack width development and 

increasing aggregate interlock. Hii and Al-Mahaidi [5] investigated RC beams with solid 

and box sections that were strengthened in torsion with CFRP composite and compared 

the results with those obtained from the nonlinear finite element program DIANA. 

Chalioris [6] tested rectangular and T-shaped RC beams without internal transverse 

reinforcement and strengthened with CFRP composite in order to evaluate the 

contribution of the composite material to the torsional strength. Ameli et al. [7] 

investigated the behavior of rectangular RC beams strengthened with CFRP or GFRP 

composite and compared the results with those obtained from the nonlinear finite element 

program ANSYS. Deifalla et al. [8] tested rectangular, T-shaped, and L-shaped beams 

strengthened with CFRP composite to study the effectiveness of the strengthening 

technique on the torsional strength of beams with various cross-sections.  
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FRP composites have several attributes such as high strength and stiffness, light 

weight, resistance to corrosion, and flexibility of use that make it a suitable structural 

strengthening material. On the other hand, disadvantages of FRP composites include 

difficulty to install on wet surfaces or in low temperatures, low fire resistance, low glass 

transition temperature, and lack of vapor permeability, which are associated with the use 

of organic matrix. Recently a new type of composite called fiber reinforced cementitious 

matrix (FRCM) composite has been developed to overcome or reduce some of the 

shortcomings associated with FRP composites. In contrast to organic matrix, inorganic 

cementitious matrix can be applied in low temperatures and on wet surfaces, allows vapor 

permeability, and has better heat resistance. Different types of fibers have been used in 

FRCM composites systems such as carbon, glass, aramid, basalt, steel, and 

polyparaphenylene benzobisoxazole (PBO). The use of FRCM composites has been 

studied for flexural [9-11] and shear strengthening [12-15] of RC members and 

confinement of axially/eccentrically loaded elements [16-17], but currently there are no 

studies in the technical literature on its use for torsional strengthening.  

The tensile force in an externally bonded composite strengthening system is 

transferred to the substrate through the fiber-matrix and matrix-concrete interfaces 

through shear. Recent studies on the fundamental bond behavior of PBO FRCM-concrete 

joints [18-26] indicate that the debonding failure mode is quite different from that of 

FRP-concrete joints. For FRP-concrete joints, failure occurs in a quasi-brittle manner 

within a thin mortar-rich layer of the concrete substrate, whereas with PBO FRCM-

concrete joints failure occurs at the fiber-matrix interface with significant fiber slippage 

relative to the matrix. This difference in failure mode warrants investigation of the 
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fundamental torsional behavior of RC members strengthened with PBO-FRCM 

composites to examine the potential differences with respect to RC members 

strengthened with FRP composites.    

The aim of this study is to investigate the torsional behavior of RC beams 

externally strengthened with PBO-FRCM composite in terms of torsional strength, 

rotational ductility, and failure mode. In this paper, the experimental results of four solid 

rectangular RC beams externally strengthened with PBO-FRCM composite material in 

different wrapping configurations are presented and compared with those of an 

unstrengthened control beam. The torque-twist load response and strains measured in the 

internal and external reinforcement are evaluated, and the applicability of design 

provisions for torsional strengthening using FRP composite is examined.   

 

2. EXPERIMENTAL PROGRAM 

2.1 EXPERIMENTAL DESIGN 

A total of five RC beams were included in the experimental program. The beams 

were designed based on the ACI 318 code [27] provisions. All beams had a rectangular 

cross-section with the same nominal dimensions of b = 8 in. (203.2 mm) wide × h = 12 

in. (304.8 mm) tall × 84 in. (2133.6 mm) long and the same internal reinforcement. 

Dimensions and details of the RC beams are shown in Figure 1. The beams had a test 

region in which the composite was applied of 60 in. (1524.0 mm) long that was 

reinforced with minimum torsional reinforcement in transverse direction in accordance 

with the ACI 318 code [27]. The volumetric reinforcement ratios of the longitudinal and 

transverse reinforcement were 𝜌𝜌𝑠𝑠𝑠𝑠 = 𝐴𝐴𝑠𝑠𝑠𝑠 𝐴𝐴𝑐𝑐⁄ = 1.29% and 𝜌𝜌𝑠𝑠𝑠𝑠 = 𝐴𝐴𝑠𝑠𝑠𝑠
𝐴𝐴𝑐𝑐

𝑝𝑝𝑠𝑠
𝑠𝑠

= 0.92%, 
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respectively, where Asl is the total area of longitudinal bars, Ac is the gross concrete area 

(Ac=bh), Ast is area of one leg of a stirrup, pt is perimeter of a stirrup, and s is the center to 

center spacing of stirrups. The end regions of the beam (12 in. [304.8 mm] long each end) 

were more heavily reinforced to prevent failure in the clamp regions.  

Reinforcing bars in the beam specimens were No. 3 (dia. = 9.5 mm, area = 71 

mm2) and No. 5 (dia. = 15.9 mm, area = 199 mm2) ASTM A615 Grade 60 (Grade 420) 

deformed steel bars [28]. All reinforcing bars of the same size were from the same heat. 

Tension tests were conducted on three samples of each bar size to determine the 

mechanical properties. Table 1 shows the properties of the longitudinal and transverse 

reinforcement, which were determined based on the average of three coupon samples for 

each size tested according to ASTM A370 [29].  

All beams were constructed at the same time with normalweight concrete without 

admixtures. The coarse aggregate type was crushed dolomite with 1 in. (25.4 mm) 

maximum aggregate size, and the fine aggregate was river sand. The compressive 

strength, splitting tensile strength, and modulus of elasticity of concrete were determined 

based on the average of three 4 in. (101.6 mm) diameter × 8 in. (203.2 mm) long 

cylinders tested at 28 days in accordance with ASTM C39 [30], ASTM C496 [31], and 

ASTM C469 [32], respectively. The concrete properties are listed in Table 1. The beams 

and cylinders were moist cured for four days under wet burlap then kept together in the 

laboratory under the same atmospheric conditions until testing.                        
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2.2 FRCM COMPOSITE MATERIAL 

The FRCM composite was comprised of PBO fibers with an inorganic matrix 

[33]. The PBO fibers were in the form of an unbalanced fiber net as shown in Figure 2. 

The net is formed with rovings spaced at 0.4 in. (10 mm) and 0.8 in. (20 mm) on center in 

the longitudinal and transversal directions, and the free spacing between rovings is 0.2 in. 

(5 mm) and 0.6 in. (15 mm), respectively. The nominal thicknesses (which is obtained by 

assuming the fibers are distributed evenly over the entire width of the composite) in the 

two fiber directions are 0.0018 in. (0.046 mm) and 0.0005 in. (0.012 mm), respectively. 

The total weight of PBO fibers in the mesh is 0.00013 lb/in2 (88 g/m2), with 0.00010 

lb/in2 (70.4 g/m2) in the longitudinal direction and 0.000025 lb/in2 (17.6 g/m2) in the 

transversal direction.  

The FRCM material properties are listed in Table 2. Tensile strength, ultimate 

strain, and elastic modulus of the fibers determined from tensile tests of the bare fibers 

were 440 ksi (3015 MPa), 0.0145, and 29,900 ksi (206 GPa), respectively [21], [23]. 

Mortar compressive and splitting tensile strength properties were determined from of a 

representative sample of matrix used to cast the FRCM composite using the average of 

three 2 in. (50.8 mm) diameter × 4 in. (101.6 mm) long cylinders tested at 28 days in 

accordance with ASTM C39 [30] and ASTM C496 [31], respectively. 

 

2.3 FRCM COMPOSITE INSTALLATION AND WRAPPING SCHEMES 

The corners of the RC beams were chamfered with a radius of 0.75 in. (19 mm) in 

order to reduce stress concentrations at the corners, which have been reported to lead to 

fiber rupture and failure of beams strengthened in torsion with FRP composites [34]. The 
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PBO-FRCM composite material was installed on the beams after the beams were 28 days 

old. The strengthening process is summarized as follows: 

• The surface of the beam was sandblasted to achieve a target profile of 0.1 in. (2 

mm). 

• The surface of the beam was cleaned of dust and dirt.  

• The surface of the beam was saturated with water before applying the first layer 

of matrix. 

• In order to control the location and total thickness of the composite, foam strips of 

0.2 in. (5 mm) thickness were mounted to the beam as shown in Figure 3. 

• The first layer of cementitious matrix was applied in a layer that was 

approximately 0.1 in. (3 mm) thick.  

• Pre-cut fibers were applied to the fresh cementitious matrix and pressed gently to 

ensure proper alignment and placement. 

• The second 0.1 in. (2 mm) thick layer of cementitious matrix was applied to cover 

the fibers. The thickness of the external matrix layer was slightly less than the 

recommended thickness, however previous results indicate that the contribution of 

the external matrix layer to the load carrying capacity of the interface is much less 

significant than that of the internal matrix layer [35].  The total thickness of the 

composite was 0.2 in. (5 mm). 

• For the specimen strengthened with two layers of fibers, the additional layer of 

fibers was pressed gently into the second layer of the fresh matrix then covered 

with an additional layer of cementitious matrix. The total thickness of the 

composite was approximately 0.4 in. (10 mm). 
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Four beams were strengthened, and one beam was unstrengthened for use as the 

control. Different wrapping schemes were used to study the torsional behavior of RC 

beams strengthened with the different configurations. The wrapping schemes are shown 

in Figure 4. One beam was strengthened with a 3-sided configuration in form of strips 

that were 4 in. (101.6 mm) wide with 4 in. (101.6 mm) clear spacing between strips 

(Figure 4b). The 3-sided configuration was investigated because in certain cases, the 

complete perimeter of the beam may not be accessible for strengthening, as in the case of 

a T-beam in monolithic construction. Three other beams were strengthened with a 4-

sided configuration (i.e., fully wrapped) with one layer of strips that were 4 in. (101.6 

mm) wide with 4 in. (101.6 mm) clear spacing between strips (Figure 4c), or with one or 

two layers continuous along the test region (Figure 4d and e). In each case, the fiber net 

was orientated such that the longitudinal fiber direction (Figure 2) was perpendicular to 

the longitudinal axis of the beam. An 8 in. (203.2 mm) overlap, corresponding to the 

beam width, was used for the beams that were wrapped with a 4-sided configuration. This 

length was slightly less than the effective bond length of the composite, defined as the 

minimum length needed to develop the load-carrying capacity of the interface [22], 

which has been shown to be approximately 10 in. (260 mm) [22].   

 

2.4 TEST SETUP, INSTRUMENTATION, AND LOADING PROTOCOL 

The test setup is shown in Figure 5. A similar test setup was previously used in 

the study by Panchacharam and Belarbi [2]. The torque was applied to the beam through 

the loading arm with an 18 in. (457 mm) eccentricity relative to the centroid of the cross-

section by a hydraulic jack of 30 k (130 kN) capacity and measured by a load cell of 100 
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k (445 kN) capacity. The reaction arm was supported by a threaded rod that was anchored 

to the reaction floor. The reaction end of the beam was allowed to slide freely in the 

longitudinal direction to avoid axial restraint on the beam and allow the concrete cracks 

to open. Secondary bending effects due to self weight and to application of the load were 

neglected. Restraint of warping due to the clamping effects at each end was also 

neglected. 

 The average angle of twist per unit length was measured by a rotational variable 

differential transformer (RVDT) mounted along the east face of the beam within the test 

region with gage length of 45.5 in. (1155.7 mm). On the west face of the beam, the twist 

was determined by measuring the relative vertical displacements using two linear 

variable differential transformers (LVDTs) with a spacing similar to the RVDT gage 

length in order to verify the RVDT readings. Three additional LVDTs with inclinations 

of 0°, 45°, and 135° in the counterclockwise direction from the longitudinal axis of the 

beam in the form of rosette were used to measure the average longitudinal strain, 

diagonal compressive strain, and diagonal tensile strain, respectively, on the surface of 

the beam. Another LVDT was placed at the reaction end of the beam at the center of the 

cross-section to measure the deformation of the beam in the longitudinal direction. The 

RVDT and LVDTs are shown in Figure 6. 

In order to measure the strain in the steel reinforcement, a total of 17 strain gages 

were mounted to the longitudinal (9) and transverse (8) bars at the middle, quarter, and 

third quarter of the test region. To measure the strain in the FRCM fibers, a total of 27 or 

36 strain gages were used on specimens with the 3-sided or 4-sided wrapping 

configurations, respectively. The surface of the matrix was carefully abraded at the 
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location of each strain gage in order to expose the fibers as shown in Figure 7, and then 

the strain gages were mounted onto the fibers. The locations of the strain gages are shown 

in Figure 8.     

The beams were tested under monotonically increasing loading resulting in torque 

moment T until one of the following conditions occurred: 1) after the peak torque, 

referred to herein as the torsional strength Tu, a significant drop in torque occurred, or 2) 

the maximum twist capacity of the test setup was reached. The loading was first 

controlled by slowly increasing the force, and then once the torsional strength was 

reached, the loading was controlled by slowly increasing the displacement. Electronic 

data collected from the instrumentation were recorded using a data acquisition system. 

The loading was temporarily paused at different times to mark cracks on the surface of 

the beam, document the damage, and take photographs. 

 

3. EXPERIMENTAL RESULTS 

3.1 GENERAL BEHAVIOR AND FAILURE MODE 

The failure mode of each tested beam is shown in Figure 9. The control beam 

exhibited typical RC torsional behavior with spiral diagonal cracks around the cross-

section in a continuous form. Two complete spiral cracks were created with a major crack 

angle of approximately 45° with respect to the longitudinal axis of the beam. Crushing of 

the concrete strut at the middle of the test region controlled the failure.  

The behavior and failure mode of beam N-P-3-S-1 with a 3-sided wrapping 

configuration were similar to those of the control beam except the location of failure was 

near beam restrained end, and failure was followed by concrete cover spalling with the 
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composite strips still attached (Figure 9b). Excessively wide concrete cracks, oriented 

approximately 45° with respect to the longitudinal axis of the beam, were concentrated on 

the beam face without the composite near the end of the beam (Figure 9b). At the 

discontinuous ends of the composite, the fibers were observed to progress into the matrix 

indicating slippage of the fibers relative to the matrix. Whereas 3-sided unanchored 

wrapping configurations with FRP composite have shown to provide some improvement 

to the torsional performance of RC beams [3], the ineffectiveness of the 3-sided PBO-

FRCM composite can be explained by the fact that PBO FRCM-concrete joints exhibit 

significant fiber slippage in the formation of the bond mechanism [22] that is much larger 

than that exhibited by FRP-composite joints (i.e., approximately 10 times). This fiber 

slippage is not restrained in the case of a 3-sided wrapping configuration without 

sufficient anchorage. Furthermore, the effective bond length of the PBO-FRCM 

composite used in this study was found to be approximately 10 in. (260 mm) [22], 

corresponding to approximately 85% of the beam height. Therefore, depending on the 

location of the torsional crack, the composite may not be able to develop the full stress 

transfer on the side faces of the beam.  

Beams that were strengthened with PBO-FRCM composite with a 4-sided 

wrapping configuration exhibited hairline cracks on the surface of the composite that 

increased in number and width with increasing load and twist (see Figures 9c, d, and e). 

Cracks were oriented approximately 45° with respect to the longitudinal axis of the beam.  

Localized areas of slip between fibers and matrix were noted in the vicinity of the 

concrete cracks as a result of the deformation compatibility requirement between the 

composite and concrete. Fiber slippage was observed to increase with increasing twist, 
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however no measurements of fiber slippage were taken in this study. Failure was due to 

fiber rupture followed by crushing of the concrete struts after loss of confinement at 

midspan and near the reaction end for beams N-P-4-S-1 and N-P-4-C-1, respectively, 

while for beam N-P-4-C-2, failure occurred along the entire beam length. 

The contribution of the composite to the torsional response is dependent upon the 

bond characteristics between the composite and the concrete. Direct-shear tests of PBO 

FRCM-concrete joints indicate that debonding occurs at the matrix-fiber interface with 

significant slippage of the fibers [22], [23]. For torsional strengthening using a 4-sided 

wrapping configuration, however, failure does not occur immediately after localized 

debonding due to the continuity of the hoop, where support to each face is provided by 

the adjacent faces [34]. On the other hand, since the length of the overlap provided in this 

study was slightly less than the effective bond length, debonding (fiber slippage relative 

to the embedding matrix) may have occurred at relatively large fiber strains. Such 

slippage around a corner and the resulting friction (interlocking) that occurs between 

fibers and the embedding matrix could potentially result in premature fiber rupture.  For 

this reason, future studies should consider providing a longer overlap region on the order 

of the effective bond length of the composite. 

After testing was completed, the FRCM composite was removed from beam N-P-

4-C-2 to observe the damage in the concrete as shown in Figure 10. Numerous concrete 

cracks were distributed along the entire length of the beam, which suggests that the 

confinement helped distribute the stresses along the entire test region.  
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3.2 TORQUE-TWIST RESPONSE 

The applied torque T versus twist per unit length ψ response for all beams is 

shown in Figure 11. With the exception of beam N-P-3-S-1, values of ψ in Figure 11 

correspond to those measured by the RVDT. Values of ψ for beam N-P-3-S-1 were 

determined with the LVDTs since the RVDT detached after the peak load was reached. 

For all beams (with the exception of beam N-P-3-S-1), values of ψ determined with the 

RVDT were consistent with values computed from the LVDTs at the same load level. 

Drops in the response associated with pauses to mark cracks have been removed from the 

graph. 

The overall behavior shown in Figure 11 indicates that the FRCM composite 

provided an increase in the torsional strength and twist at the peak load. In general, a 

linear behavior before cracking with high torsional stiffness was observed for each 

strengthened beam, then the beam suffered an increase in the twist angle without 

increasing of torque due to redistribution of forces from the concrete to the steel 

reinforcement. After this stage and before achieving the peak load, the behavior became 

non-linear with a reduction in torsional stiffness. The strengthened beams exhibited 

ductile behavior in the post-cracking stage due to yielding of the steel reinforcement and 

possibly slippage of the fibers in the composite. 

The torque associated with cracking Tcr and the peak load (i.e., the torsional 

strength Tu), along with the corresponding angles of twist per unit length ψcr, and ψu, 

respectively, are summarized in Table 3. For the strengthened beams, Table 3 also reports 

the ratio of Tcr, Tu , ψcr, and ψu to the corresponding values from the control beam. The 

most effective wrapping scheme was that of beam N-P-4-C-2, with two layers of fully 
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wrapped composite, which achieved 2.09 and 2.84 times the torsional strength and 

corresponding angle of twist relative to the control beam, respectively. The least effective 

wrapping scheme was that of beam N-P-3-S-1, which had 3-sided strips, with values 

close to those of the control beam. 

For beams with a 4-sided wrapping configuration (beams N-P-4-S-1, N-P-4-C-1, 

and N-P-4-C-2), Figure 11 and Table 3 show that the PBO-FRCM composite enhanced 

the beam stiffness by reducing ψcr, which was due to arresting the concrete cracks, and 

increased the cracking torque Tcr up to 1.40 times that of the control beam by providing 

an effective confinement. All three beams had a significantly higher energy absorption 

capability [2] (as indicated by the area under the T-ψ curve) than the control beam. 

Comparing the load response of beams N-P-4-S-1 and N-P-4-C-1, each of which had one 

layer of fibers, it can be seen that the continuous fibers were more effective in increasing 

the cracking torque Tcr, post cracking stiffness, and torsional strength Tu than the strips, 

which is due to the continuous confinement provided along the length. As noted by 

Panchacharam and Belarbi [2], strip width and spacing influences the confinement, thus 

affecting the post-cracking behavior. 

Comparing beams N-P-4-C-1 and N-P-4-C-2, both of which had continuous fibers 

along the length, it can be seen that two layers of FRCM composite enhanced the post-

cracking stiffness and torsional strength more effectively than one layer of composite. 

The increase in torsional strength was not directly proportional to the number of fiber 

layers (further discussion is provided in Section 5). 

For the beam with a 3-sided wrapping configuration (beam N-P-3-S-1), the 

FRCM composite strips had a slight effect on the torsional load relative to that of the 
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control beam, corresponding to 11.4% and 7.4% increase in the cracking torque and 

torsional strength, respectively, with no increase in the twist angle at the torsional 

strength. Figure 11 also shows that the stiffness reduced rapidly after the peak load, 

which was due to the progression of concrete cracking and crushing on the face without 

the composite. Despite the lack of continuity of fibers around the perimeter of the 

member, research findings suggest that 3-sided wrapping configurations help improve the 

torsional strength and performance by restraining the concrete cracks [3]. This may help 

explain the slight increase in torsional performance of beam N-P-3-S-1 relative to that of 

the control beam. On the other hand, comparing beams N-P-3-S-1 and N-P-4-S-1 it can 

be seen that the 3-sided wrapping configuration is clearly less effective than the 4-sided 

configuration because of the discontinuity of the fibers around the beam perimeter. It is 

worth mentioning that with FRP composites, certain types of mechanical anchorage have 

been used to anchor the FRP to improve the contribution to the torsional resistance [2], 

since those types of anchorage restrain the peeling effect at the discontinuous ends of 

FRP composites [36]. With FRCM composites, on the other hand, it is questionable 

whether such anchorage would restrain the fiber slippage that characterizes debonding of 

PBO-FRCM composites. Future work on anchorage of FRCM composites is needed to 

explore this issue. 

 

3.3 INTERNAL AND EXTERNAL REINFORCEMENT STRAINS 

Strains measured in the internal and external reinforcement varied along the 

length of the beam due to the position of the strain gages relative to the torsional cracks 

in the concrete and the composite matrix. Strains measured in the fibers of beams N-P-4-
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C-1 and N-P-4-C-2, with 4-sided continuous wrapping configuration, were relatively 

uniform along and around the beam. For beam N-P-4-S-1, with 4-sided strips, strains 

were relatively localized in the vicinity of torsional cracks and were not spread uniformly 

along the beam length. 

The applied torque versus strain measured in the stirrups εt, longitudinal bars εl, 

and externally bonded composite fibers in the primary fiber direction (transversal 

direction of the beam) εf is shown in Figure 12 for each beam, in which the values of 

strain are from the strain gages that recorded the maximum corresponding values. Strain 

measurements are plotted until the end of the test or until the strain gage malfunctioned. 

Values of the yield strain of the stirrups εty and longitudinal bars εly determined from the 

tensile tests are also indicated in the graphs. Figure 12 shows that the strain in each type 

of reinforcement was small until concrete cracking occurred, then the strain increased 

rapidly after that point. The FRCM composite started to contribute to the torsional 

resistance once torsional cracks in the concrete formed and propagated. 

The maximum strains measured in the internal reinforcement (transverse and 

longitudinal reinforcing steel bars) and external reinforcement (FRCM composite) at 

different load stages are summarized in Table 4.  For the strengthened beams with a 4-

sided wrapping configuration, values of strain in the stirrups at the torque moment 

corresponding to the torsional strength of the control beam (T=148.7 k-in. [16.8 kN-m]) 

were significantly lower than those in the control beam. Also, values of strain in the 

longitudinal reinforcement were slightly lower than those in the control beam at torque 

T=148.7 k-in. (16.8 kN-m). At the torsional strength of each strengthened beam, the 

strains in the stirrups were close to those of the control beam at its torsional strength.  On 
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the other hand, strains measured in the longitudinal bars of the strengthened beams were 

much larger than those of the control beam. Therefore, it is reasonable to assume that 

only the primary fibers (hoop direction) contributed to the increase in torsional strength. 

This observation supports the design concept of using the primary fibers as the main 

contributor to increase beam torsional strength, as discussed further in Section 4. 

     

4. ANALYSIS  

The torsional strength of an RC member strengthened with externally bonded 

composite Tn can be estimated by adding the contributions of the (unstrengthened) RC 

member TRC and the externally bonded composite strengthening system Tf as shown in 

Eq. (1) [37-39]. This approach assumes there is no interaction between the RC member 

and the externally bonded composite system and has been used to determine the 

contribution of FRP composite to the torsional strength of RC members [40]. 

                                             𝑇𝑇𝑛𝑛 = 𝑇𝑇𝑅𝑅𝑅𝑅 + 𝑇𝑇𝑓𝑓                                                               (1) 

In this analysis, TRC was taken as the torsional strength Tu of the control beam 

(148.7 k-in. [16.8 kN-m]). From Eq. (1), the contribution of the externally bonded 

composite to each of the strengthened beams in this study was determined by subtracting 

TRC from the torsional strength and is reported as Tf,Exp in Table 5. 

For RC members strengthened with FRP composite, the contribution of the 

externally bonded composite strengthening system Tf has been estimated assuming that 

the externally bonded composite behaves similarly to internal stirrups, and considering 

the strain in the composite [37], [38], and [39]. The applicability of this model is herein 

explored for the case of FRCM-strengthened elements. From the fib provisions for FRP-
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strengthened elements [38], Tf can be computed using Eq. (2) for members that are fully 

wrapped: 

                                  𝑇𝑇𝑓𝑓 = 2. 𝜀𝜀𝑓𝑓𝑓𝑓 .𝐸𝐸𝑓𝑓 .𝑏𝑏.ℎ. 𝑠𝑠𝑓𝑓.𝑏𝑏𝑓𝑓
𝑠𝑠𝑓𝑓

𝑐𝑐𝑐𝑐𝑡𝑡 (𝜃𝜃)                                               (2) 

where εfe is the effective strain in the composite, Ef is the modulus of elasticity of the 

composite, tf is the thickness of the composite, bf is the width of the composite sheets, sf 

is the center-to-center spacing of the applied composite sheets, b is the width of the cross-

section, h is the height of the cross-section, and θ is the angle of diagonal crack with 

respect to the longitudinal axis of the member (usually assumed as 45 deg. for pure 

torsion).   The effective strain εfe is the strain in the fiber direction along the crack when 

the member reaches its torsional strength, which can be used to determine the force in the 

composite at failure of the member. It should be noted that partial safety factors and 

reduction factors in the fib provisions [38] have been omitted from Eq. (2). 

Using Eq. (2), the contribution of the FRCM composite to each of the 

strengthened beams with a 4-sided wrapping configuration was computed considering the 

maximum measured strain in the fibers corresponding to the torsional strength (Table 4) 

as the effective strain εfe, and values are reported as Tf,An in Table 5. The term Ef was 

taken as the value corresponding to the fibers, and tf  was taken as the nominal thickness 

of the fibers in the primary fiber direction (discussed in Section 2.2). Values of Tf,An are in 

reasonable agreement with those of Tf,Exp, within +/- 20%, which shows that this approach 

is applicable for the case of FRCM-strengthened elements. 

It is worth noting that the design value of the effective strain in the fibers is 

determined in different ways in different design provisions. The fib provisions for FRP-
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strengthened elements suggest that the design value of εfe is a function of the fiber 

material properties, reinforcement ratio, concrete material properties, and failure mode 

[38].  However, previous studies from the literature [41] have shown that for the case of 

PBO-FRCM composites, concrete strength may not significantly influence the load-

carrying capacity of the FRCM-concrete interface. Therefore the fib approach to compute 

the effective strain may not be appropriate for FRCM composites. NCHRP provisions for 

the design of FRP-strengthened elements specify that the effective strain be limited to a 

maximum value of 0.004 to preclude the loss of aggregate interlock or delamination of 

the composite from the substrate [39].  Results from this study, including values of strain 

in the fibers at the torsional strength (Table 4), show that the limiting value of the 

effective strain of 0.004 [39] may also be appropriate for the design of torsional 

strengthening with PBO-FRCM composite for beams that are strengthened with a 4-sided 

wrapping configuration.   

 

5. COMPARISON WITH OTHER COMPOSITES 

In this section, the effectiveness of PBO-FRCM composite with different 

wrapping schemes is evaluated and compared with that of other composites. In Figure 13 

the increase in torsional strength Tu for each of the beams relative to the unstrengthened 

beam is plotted versus the volumetric ratio of fibers ρf, computed using Eq. (3): 

                                                   𝜌𝜌𝑓𝑓 = 𝑛𝑛𝑓𝑓.𝑠𝑠𝑓𝑓.𝑝𝑝𝑓𝑓
𝐴𝐴𝑐𝑐

𝑏𝑏𝑓𝑓
𝑠𝑠𝑓𝑓

                                                          (3) 

where pf is the wrapped perimeter of the beam, nf is the number of composite layers, and 

the other variables were defined previously. Results in Figure 13 are supplemented with 
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those by Ameli et al. [7], who tested solid rectangular RC beams strengthened with CFRP 

or GFRP composite. The beams selected for the comparison had the same wrapping 

configurations as those in this study (3- or 4-sided wrapping configuration, with strips or 

continuous sheets), and the results are summarized in Table 6. Beams with 3- and 4-sided 

wrapping configurations are distinguished by different marker types in the figure. Values 

of ρf in Figure 13 are shown in units of tf/Ac to compare beams of different cross-sections 

and different fiber thicknesses. 

For all three series, the lowest value of ρf in Figure 13 corresponds to a 3-sided 

wrapping configuration with strips, and the remaining values correspond to a 4-sided 

wrapping configuration with either strips or continuous fiber sheets. In the case of the 3-

sided wrapping configuration, the increase in torsional strength is relatively low for all 

three composite types due to the non-closed form of the strengthening material. It is 

likely that the increase in torsional strength for the PBO-FRCM composite was even 

lower than that of CFRP or GFRP composite because of fiber slippage that occurs with 

PBO-FRCM composites. For beams with a 4-sided wrapping configuration, Figure 13 

shows that the torsional strength increased with the value of ρf for each composite type.  

Certainly, the efficiency of the strengthening system depends on its material 

properties, which differ for the three composite materials included in Figure 13. The 

efficiency is also a function of the characteristics of the RC member that is strengthened, 

including concrete material properties, reinforcing bar materials properties, transverse 

and longitudinal reinforcement ratios and layout, etc. Therefore, comparison of the 

different composite material types here is intended to be viewed as qualitative and not 

quantitative. In general, Figure 13 shows that the PBO-FRCM composite exhibits similar 
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trends as GFRP and CFRP in increasing the torsional strength of a solid rectangular RC 

beam, where the increase in torsional strength becomes less proportional to the number of 

fiber layers for larger values of ρf.  

 

6. CONCLUSIONS 

This paper presented the results of a study aimed to understand the fundamental 

torsional behavior of RC members externally strengthened with PBO-FRCM composite 

material and the parameters that potentially influence their performance. The torque-twist 

load response and strains measured in the internal and external reinforcement were 

evaluated and discussed, and the efficiency of the PBO-FRCM composite material was 

compared with that of CFRP and GFRP composites from specimens reported the 

literature. Results of this study led to the following conclusions: 

1. This study demonstrated that externally bonded PBO-FRCM composites can be used 

to strengthen RC beams in torsion. Failure of the strengthened beams was associated 

with debonding of the composite, which was characterized by significant slippage 

between the fibers and matrix.  

2. Increases in the cracking torque, torsional strength, and corresponding values of twist 

were achieved by beams strengthened with a 4-sided wrapping configuration relative 

to the control (unstrengthened) beam. On the other hand, the 3-sided wrapping 

configuration was found to be largely ineffective in improving the torsional 

performance. 
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3. The 4-sided wrapping configuration improved the torsional performance by providing 

additional reinforcement as well as confinement, which delayed and controlled 

concrete cracking. 

4. The contribution of the strengthening system to the torsional strength was reasonably 

predicted (+/- 20%) by the strains in the composite fibers. Provisions used to estimate 

the torsional strength of RC beams with externally-bonded FRP composites were 

found to be applicable for beams strengthened with FRCM composites. 

5. The trend in the efficiency of PBO-FRCM composite in increasing the torsional 

strength of solid RC members is similar to that of GFRP and CFRP composites.  

6. Further investigations are needed to study the performance of the beams with 

different fiber orientations and anchorage conditions.   
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Table 1. Measured concrete and steel reinforcement properties. 

Material Concrete Steel Reinforcement 
No. 3  No. 5 

Compressive Strength, psi (MPa) 5700 (39.3) -- -- 
Splitting Tensile Strength, psi 

(MPa) 
460 (3.2) -- -- 

Modulus of Elasticity ksi (GPa) 4150 (28.6) 29000 (200) 28000 (193) 
Yield Strength, ksi (MPa) -- 65.8 (454) 68.0 (469) 

Ultimate Strength, ksi (MPa) -- 104 (717) 107 (738) 
 
 
 
 
 
 

Table 2. Measured PBO-FRCM composite material properties. 
PBO Fibers 

Nominal Thickness, in. (mm) 0.002 (0.046) 
Ultimate Tensile Strength, ksi (MPa) 440 (3015) 

Modulus of Elasticity, ksi (GPa) 29,900 (206) 
Ultimate Strain, in./in. (mm/mm) 0.0145 (0.0145) 

Mortar 
Compressive Strength, psi (MPa) 3600 (24.8) 

Splitting Tensile Strength, psi (MPa) 670 (4.6) 
  

 

 

Table 3. Summary of test results. 

Beam Tcr k-in. 
(kN-m) 

𝑇𝑇𝑐𝑐𝑝𝑝
𝑇𝑇𝑐𝑐𝑝𝑝,𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑝𝑝𝑐𝑐𝑠𝑠

 
ψcr 

deg./in. 
(deg./m) 

𝜓𝜓𝑐𝑐𝑝𝑝
𝜓𝜓𝑐𝑐𝑝𝑝,𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑝𝑝𝑐𝑐𝑠𝑠

 
Tu 

k-in. (kN-
m) 

𝑇𝑇𝑓𝑓
𝑇𝑇𝑓𝑓,𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑝𝑝𝑐𝑐𝑠𝑠

 
ψu 

deg./in. 
(deg./m) 

𝜓𝜓𝑓𝑓
𝜓𝜓𝑓𝑓,𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑝𝑝𝑐𝑐𝑠𝑠

 

Control 91.8 
(10.4) -- 0.0042 

(0.165) -- 148.7 
(16.8) -- 0.085 

(3.346) -- 

N-P-3-S-1 102.3 
(11.6) 1.11 0.0020 

(0.079) 0.48 160.3 
(18.1) 1.08 0.076 

(2.992) 0.89 

N-P-4-S-1 126.5 
(14.3) 1.38 0.0034 

(0.134) 0.81 193.2 
(21.8) 1.30 0.245 

(9.646) 2.88 

N-P-4-C-1 121.6 
(13.7) 1.32 0.0041 

(0.161) 0.98 240.4 
(27.2) 1.62 0.230 

(9.055) 2.71 

N-P-4-C-2 128.3 
(14.5) 1.40 0.0030 

(0.118) 0.71 310.6 
(35.1) 2.09 0.241 

(9.488) 2.84 
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Table 4. Maximum measured reinforcement strains. 

 
Strains Measured at Peak Torque of 

Control Beam,  
T=148.7 k-in (16.8 kN-m) 

Strains Measured at T=Tu 

Beam εt (%) εl (%) εf (%) εt (%) εl (%) εf (%) 

Control 0.252 0.165 -- 0.252 0.165 -- 
N-P-3-S-1 0.231 0.140 0.365 0.232 0.183 0.431 
N-P-4-S-1 0.050 0.108 0.004 0.295 0.287 1.026 
N-P-4-C-1 0.058 0.119 0.026 0.275 0.638 0.822 
N-P-4-C-2 0.016 0.104 0.005 0.305 1.137 0.653 

 

 

 

Table 5. Contribution of the composite to the torsional strength. 
Beam Tu (k-in.) (kN-m) Tf,,Exp (k-in.) (kN-m) Tf,An (k-in.) (kN-m) Tf,,Exp/Tf,An

 

Control 148.7 (16.8) -- -- -- 
N-P-3-S-1 160.3 (18.1) 11.6 (1.3) -- -- 
N-P-4-S-1 193.2 (21.8) 44.5 (5.0) 53.0 (6.0) 0.84 
N-P-4-C-1 240.4 (27.2) 91.7 (10.4) 85.0 (9.6) 1.08 
N-P-4-C-2 310.6 (35.1) 161.9 (18.3) 135.0 (15.3) 1.20 

 

 

 

Table 6. Experimental results from Ameli et al. [7].  

Beam Tu (k-in.) (kN-m) % increase in Tu relative to 
unstrengthened beam 

CJS 154.0 (17.4) 16 
CFS 192.1 (21.7) 45 
CFE 247.8 (28.0) 87 
CFE2 323.1 (36.5) 143 
GJS 149.6 (16.9) 14 
GFS 176.1 (19.9) 34 
GFE 232.8 (26.3) 78 
GFE2 275.3 (31.1) 110 
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Figure 1. Beam layout and reinforcing details. 

 

 

 

 

Figure 2. PBO unbalanced fiber net. 
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Figure 3. FRCM composite installation. 

 

 



www.manaraa.com

70 
 

 

Figure 4. Schematic configuration of strengthened beams a) Control Beam, b) N-P-3-S-1, 
c) N-P-4-S-1, d) N-P-4-C-1, e) N-P-4-C-2. 
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Figure 5. Torsion test setup a) sketch, b) photograph. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. External instrumentation shown on a) east face, b) west face. 

  

 

(a) (b) 

(a) (b) 
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Figure 7. Strain gages on the fibers of the FRCM composite. 

 

 

 

 

 

 

 

 

 

 

Figure 8. Strain gage locations on the a) steel reinforcement (note, stirrups without strain 
gages not shown), b) PBO-FRCM composite. 

 

 

 

(a) (b) 
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Figure 9. Failure mode of each beam a) control beam, b) N-P-3-S-1, c) N-P-4-S-1, d) N-
P-4-C-1, e) N-P-4-C-2. 
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Figure 10. Distribution of concrete cracks beneath the FRCM composite for beam  
N-P-4-C-2. 

 

 

 

 

Figure 11. Experimental torque T-Twist ψ responses. 
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Figure 12. Torque versus reinforcement strain a) control beam, b) N-P-3-S-1, c) N-P-4-S-
1, d) N-P-4-C-1, e) N-P-4-C-2. 
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Figure 13. Influence of volumetric ratios of different wrapping systems on the increase in 
torsional strength relative to the unstrengthened condition. 
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III. A STUDY OF THE EFFECT OF FIBER ORIENTATION ON THE 
TORSIONAL BEHAVIOR OF RC BEAMS STRENGTHENED WITH PBO-

FRCM COMPOSITE 
 

Meyyada Y. Alabdulhady and Lesley H. Sneed 

 

ABSTRACT 

Repair and rehabilitation of reinforced concrete (RC) structures with different 

types of external reinforcement has been investigated widely. Fiber reinforced 

cementitious matrix (FRCM) is a new type of composite system that contains continuous 

fibers embedded in inorganic matrix. This system has been proven to be effective for 

strengthening RC members under flexure, shear, and axial loadings.  However, studies on 

the use of FRCM composite for torsional strengthening are very limited. This study 

investigated experimentally the torsional behavior of solid rectangular RC beams 

strengthened with externally bonded PBO-FRCM composite in different wrapping 

configurations. The study focused on the effect of fiber orientation as well as other 

parameters that influence the torsional strength, torsional moment-twist per unit length 

response, and mode of failure including fiber continuity and number of composite layers. 

The strains in the internal and external reinforcement and the longitudinal elongation of 

the strengthened beams were examined, and a comparison with other types of fiber 

reinforced composite was also discussed. The 90° fiber orientation (perpendicular to the 

beam longitudinal axis) was more effective in increasing the torsional strength than the 

45° fiber orientation since premature debonding of the fibers occurred at the ends of the 

45° strips, which contrasted the potential benefits from optimizing the fiber orientation 

and led to the underutilization of the composite. The 90° fiber orientation was also more 

effective than the 0° fiber orientation. 
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HIGHLIGHTS 

• RC beams strengthened with PBO-FRCM composite were tested under torsional 

moment.  

• The effect of composite fiber orientation on the torsional response was studied.  

• Internal and external reinforcement strains were presented. 

• Longitudinal elongation of the strengthened beams was examined. 

 

KEYWORDS 

Fiber orientation; fiber strain; PBO-FRCM composite; RC beams; strengthening; torsion. 

 

1. INTRODUCTION 

Fiber reinforced cementitious matrix (FRCM) composite material has been used 

recently in repair and strengthening of reinforced concrete (RC) members in buildings 

and bridges [1-3]. This type of composite, which is comprised of continuous fibers 

embedded in an inorganic matrix, has favorable features over fiber reinforced composites 

with organic resin, such as fiber reinforced polymer (FRP) composites, due to its higher 

temperature resistance and reversibility, ability to be installed onto wet surfaces or in low 

temperatures, and good vapor permeability due to compatibility with concrete and 

masonry substrates. Therefore, FRCM composites appear to be highly promising, 

especially for application to historical constructions [4]. Different types of fibers have 

been used in FRCM composite systems including carbon, glass, basalt, steel, and 

polyparaphenylene benzobisoxazole (PBO). The use of FRCM composites has been 

studied for flexural [5-8] and shear strengthening [9-15] of RC members and confinement 
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of axially and eccentrically loaded elements [16-18]. On the other hand, very few studies 

are available in the technical literature on its use for torsional strengthening [19]. 

Torsional behavior of RC beams strengthened with externally bonded FRP 

composites has been investigated since the early 2000s [20-24].  Some authors have 

studied the effect of the FRP fiber orientation on the torsional strength. Panchacharam 

and Belarbi [25] studied the behavior of RC beams with a square cross-section 

strengthened with glass FRP (GFRP) composite in different fiber orientations (0° and 90° 

relative to the longitudinal axis of the beam) and wrapping configurations. The results 

showed that fibers with 0° orientation increase the torsional moment associated with 

concrete cracking, although they were ineffective for increasing the torsional strength. 

Ghobarah et al. [26] investigated the behavior of RC beams with a rectangular cross-

section strengthened with GFRP or carbon FRP (CFRP) composite with different fiber 

orientations (45° and 90° relative to the longitudinal axis of the beam) and wrapping 

schemes (continuous along the length or discrete strips with different widths and 

spacings). Findings showed that spiral wrap with a 45° fiber orientation is more efficient 

in terms of increasing the torsional strength than fibers a 90° orientation.  Deifalla et al. 

[27] tested rectangular, T-shaped, and L-shaped beams strengthened with CFRP 

composite with fibers oriented in the 45° and 90° directions to study the effectiveness of 

the strengthening technique on increasing the torsional strength of beams with various 

cross-sections. The results showed that the torsional strength and rotational capacity of L-

shaped RC beams with anchored, inclined U-jackets were increased by 12% relative to 

those with anchored, vertical U-jackets. Furthermore, anchored 45° U-jacket strips were 

found to be more effective than unanchored 45° U-jacket strips, while anchored 45° U-
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jacket strips were comparable to 45° fully wrapped strips. This study investigates the 

torsional behavior of RC beams strengthened with PBO-FRCM composite. The 

experimental results of 10 solid rectangular RC beams externally strengthened with PBO-

FRCM composite material in different wrapping configurations are presented and 

compared with those of an unstrengthened control beam. The aim of the present study is 

to investigate the effect of fiber orientation and wrapping configuration on the torsional 

strength, behavior, and failure mode of FRCM strengthened RC beams.  

 

2. EXPERIMENTAL PROGRAM 

2.1 MATERIAL PROPERTIES 

The RC beams in this study were constructed with normalweight concrete. The 

coarse aggregate was a crushed dolomitic limestone with 1 in. (25.4 mm) maximum 

aggregate. The fine aggregate was natural river sand. The beams were constructed in two 

batches, named Batch 1 and Batch 2, with the same concrete mixture proportions  

summarized in Table 1. The compressive strength, splitting tensile strength, and modulus 

of elasticity of each batch of concrete were determined from the average of three 4 in. 

(101.6 mm) diameter × 8 in. (203.2 mm) long cylinders cast at the same time and cured in 

the same manner as the concrete beams and tested at 28 days in accordance with ASTM 

C39 [28], ASTM C496 [29], and ASTM C469 [30], respectively. The measured concrete 

properties are summarized in Table 2. The concrete beams and cylinders were covered 

with wet burlap for four days then kept together in the laboratory under the same 

atmospheric conditions until testing.  
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Reinforcing bars were ASTM A615 Grade 60 (Grade 420) deformed steel bars of 

sizes No. 3 (dia. = 9.5 mm, area = 71 mm2) and No. 5 (dia. = 15.9 mm, area = 199 mm2) 

[31]. Reinforcing bars of the same size were from the same heat of material. Three 

coupon samples of each bar size were tested according to ASTM A370 [32] to obtain the 

material properties, and the results are provided in Table 2.  

The FRCM composite used in this study was comprised of a bidirectional PBO 

fiber net embedded in an inorganic matrix [33]. The PBO fiber net is shown in Figure 1. 

The fiber net rovings were spaced 0.4 in. (10 mm) and 0.8 in. (20 mm) center-to-center in 

the longitudinal and transversal directions of the net. The clear spacing between rovings 

was 0.2 in. (5 mm) and 0.6 in. (15 mm), respectively. The nominal thicknesses (obtained 

by assuming the fibers are distributed evenly over the entire width of the composite) in 

the two fiber directions were 0.0018 in. (0.046 mm) and 0.0005 in. (0.012 mm), 

respectively. The weight of PBO fibers in the mesh was 0.00010 lb/in2 (70.4 g/m2) and 

0.000025 lb/in2 (17.6 g/m2) in the longitudinal and transversal directions, respectively, 

with a total weight of 0.00013 lb/in2 (88 g/m2). Tensile strength, ultimate strain, and 

elastic modulus of the PBO fibers determined from tensile tests of the bare fibers were 

440 ksi (3015 MPa), 0.0145, and 29,900 ksi (206 GPa), respectively [34], [35].  

The FRCM composite matrix was an inorganic cementitious mortar. The FRCM 

composite was applied to the RC beams in two batches, referred to as Batch 1 and Batch 

2, corresponding to the two batches of concrete used to cast the beams. Mortar 

compressive and splitting tensile strength properties were determined for each batch from 

of a representative sample of matrix used to cast the FRCM composite as the average of 

three 2 in. (50.8 mm) diameter × 4 in. (101.6 mm) long cylinders tested at 28 days in 
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accordance with ASTM C39 [28] and ASTM C496 [29], respectively. The FRCM 

material properties are summarized in Table 3. 

 

2.2 BEAMS UNDER INVESTIGATION 

A total of 11 RC beams were included in the experimental program, 10 of which 

were strengthened, and one was unstrengthened for use as the control. Five of the 11 

beams, including the control beam, were included in the first phase of an experimental 

campaign previously published by the authors [19]. The six additional strengthened 

beams presented in this paper were included in the second phase of the experimental 

campaign, which involved additional test variables including composite fiber orientation.  

All RC beams had a solid rectangular cross-section and the same nominal 

geometrical and mechanical properties. The nominal dimensions were b=8 in. (203.2 

mm) wide × h=12 in. (304.8 mm) tall × 84 in. (2133.6 mm) long.  The RC beams were 

designed based on the ACI 318 code [36] provisions and had the same internal 

reinforcement. The beams had a test region in which the composite was applied of 60 in. 

(1524.0 mm) long that was reinforced with minimum torsional reinforcement in the beam 

transverse direction in accordance with the ACI 318 code [36]. The internal transverse 

reinforcement was in the form of closed stirrups oriented perpendicular to the 

longitudinal axis of the beam. The volumetric reinforcement ratio of the longitudinal 

reinforcement was 𝜌𝜌𝑠𝑠𝑠𝑠 = 𝐴𝐴𝑠𝑠𝑠𝑠 𝐴𝐴𝑐𝑐⁄ = 1.29%, and of the transverse reinforcement was 

𝜌𝜌𝑠𝑠𝑠𝑠 = 𝐴𝐴𝑠𝑠𝑠𝑠
𝐴𝐴𝑐𝑐

𝑝𝑝𝑠𝑠
𝑠𝑠

= 0.92%, where Asl is the total area of longitudinal bars, Ac is the gross 

concrete area (Ac=bh), Ast is area of one leg of a stirrup, pt is perimeter of a stirrup, and s 
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is the spacing of stirrups (center-to-center). The beam end regions (12 in. [304.8 mm] 

long each end) were more heavily reinforced internally with stirrups and externally with 

CFRP composite material (strengthened beams only) with unidirectional fibers oriented 

perpendicular to the longitudinal axis of the beam to prevent failure in the end (clamp) 

regions. Figure 2 shows the dimensions and reinforcement details of the RC beams.  

The strengthened beams were wrapped with PBO-FRCM composite applied in 

different configurations. The wrapping schemes are shown in Figure 3. The strengthened 

beams were designated as N-P-X-(α or w)Y-Z, where N identifies the concrete type 

(normalweight), P identifies the fiber type in the composite (PBO), X indicates the 

number of wrapped sides (3 or 4), Y indicates whether the composite was applied in 

discrete strips or continuous along the length of the test region (S or C, respectively), and 

Z indicates the number of composite layers (1 or 2). The term α, where indicated, 

designates the primary fiber direction of the fiber layer (α=0°, 45°, or 90°) relative to the 

longitudinal axis of the beam, starting with the innermost layer for the case of multiple 

fiber layers. Unless noted otherwise, α=90°. The term w, where indicated, designates a 

relatively wide strip was used (w=8 in. [203.2 mm]). Unless noted otherwise, w=4 in. 

(101.6 mm).  The clear spacing between strips was s=4 in. (101.6 mm). The 3-sided 

configuration was investigated because in certain cases the complete perimeter of the 

beam may not be accessible for strengthening, as in the case of a T-beam or spandrel 

beam in monolithic concrete construction. 

Before the composite was applied, the corners of the RC beams were rounded 

with a radius of 0.75 in. (19 mm) to reduce stress concentrations at the corners [37]. The 

PBO-FRCM composite material was installed on the beams after they were 28 days old. 
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The concrete surface was sandblasted to a target profile of 0.1 in. (2 mm), then dust and 

loose particles were removed. The concrete surface was then wetted before applying the 

first layer of matrix. Foam strips of 0.2 in. (5 mm) thickness were mounted to the surface 

of the beam to control the location and total thickness of the composite (Figure 4). For 

beams strengthened with one layer of composite, the first (internal) layer of matrix of 

approximately 0.1 in. (3 mm) thick was applied, then pre-cut fibers were applied onto the 

fresh matrix and pressed gently to ensure proper alignment and placement. The second 

(external) layer of matrix of approximately 0.1 in. (2 mm) thick was applied to cover the 

fibers. The thickness of the external matrix layer was slightly less than the recommended 

thickness, however previous results have shown that the contribution of the external 

matrix layer to the load carrying capacity of the interface is much less significant than 

that of the internal matrix layer [38].  For beams strengthened with one layer of fibers, the 

total thickness of the composite was 0.2 in. (5 mm). For beams strengthened with two 

layers of fibers, the second layer of fibers was applied to the fresh matrix, then it was 

covered with an additional layer of matrix. The thickness of composite with two layers 

was approximately 0.4 in. (10 mm). Finally, the surface of the matrix was removed at the 

location of each strain gage in order to expose the fibers and apply the gage to the bare 

fibers. Figure 4 shows the composite application process. 

For beams wrapped with a 4-sided configuration and a 90° fiber orientation, an 8 

in. (203.2 mm) overlap, corresponding to the beam width, was provided on the top 

surface of the beam. The overlap length was slightly less than the effective bond length of 

the composite, defined as the minimum length needed to fully develop the FRCM-

substrate joint load-carrying capacity [39], which was determined to be approximately 10 
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in. (260 mm) for the PBO-FRCM composite in this study [39]. It is important to highlight 

that for strengthened beams with 45° or 0° fiber orientation, even those with a 4-sided 

wrapping configuration, the fibers sheets did not overlap at the ends of the fiber sheet 

(see Figures 3f and 3h, for example). Fiber sheets terminated at the end of the test region 

and did not extend into the clamp regions in order to avoid restraint from the clamping. 

The termination of sheets at the member end may also be required in certain practical 

cases, such as in the case of a beam-column joint in monolithic concrete construction. 

 

2.3 TEST SETUP, INSTRUMENTATION, AND LOADING PROCEDURE 

Figure 5 shows the test setup used in this study. Torsional moment was applied to 

the beam through the loading arm, which had an 18 in. (457 mm) eccentricity relative to 

the centroid of the cross-section, using a 30 k (130 kN) capacity hydraulic jack and 

measured by a 100 k (445 kN) capacity load cell. The opposite end of the beam was 

restrained with a reaction arm anchored to the strong floor with a threaded rod. The beam 

was allowed to slide freely in the longitudinal direction at the reaction end to avoid axial 

restraint and allow concrete cracks to open. Effects of secondary bending due to self 

weight and to application of the load were neglected. Additionally, the restraint of 

warping at the clamped ends was also neglected.   

A rotational variable differential transformer (RVDT) mounted along the east face 

of the beam within the test region with gage length of 45.5 in. (1155.7 mm) was used to 

measure the average angle of twist per unit length (directions are indicated in Figure 5). 

Measurements from the RVDT were confirmed with values determined from 

measurements of vertical displacement acquired from two linear variable differential 
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transformers (LVDTs) mounted on the west face of the beam. Another LVDT was placed 

at the center of the cross-section at the reaction end of the beam to measure longitudinal 

deformation of the beam. The RVDT and LVDTs are shown in Figure 6. 

A total of 17 uniaxial electrical resistance strain gages were mounted to the 

longitudinal (9) and transverse (8) reinforcing bars at the middle and quarter points of the 

beam test region (Figure 7a). A total of 27 or 36 strain gages were used to measure 

FRCM fiber strains for specimens with a 3-sided or 4-sided wrapping configuration, 

respectively (Figure 7b).  

The beams were subjected to monotonically increasing loading resulting in 

constant torsional moment T along the length. Loading continued until either a significant 

reduction in torsional moment occurred, or the twist capacity of the test setup was 

reached. At the beginning of the test, the loading was controlled by slowly increasing the 

force. After the peak torsional moment (i.e., the torsional strength) was reached, the 

loading was controlled by slowly increasing the displacement. The loading was paused to 

mark cracks and photgraph the condition of the beam at various stages during testing.  

 

3. EXPERIMENTAL RESULTS 

3.1 SUMMARY OF CRACKING AND PEAK TORSIONAL MOMENT AND 
CORRESPONDING TWIST 

 
This section summarizes and compares the salient results from the experiments 

conducted in this study. Values of the cracking and peak torsional moment (Tcr and 

Tu, respectively), along with the corresponding angles of twist per unit length (ψcr and ψu, 

respectively), are listed in Table 4. Values of the torsional moment T for all tested beams 
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were normalized for purpose of comparison since the beams had different measured 

concrete compressive strengths. Since torsional moment is proportional to the value �𝑓𝑓𝑐𝑐′ 

[36], the normalized values of torsional moment, denoted as 𝑇𝑇 � , were obtained by 

multiplying the torsional moment T by the factor �
𝑓𝑓𝑐𝑐′�

𝑓𝑓𝑐𝑐′
�  , where 𝑓𝑓𝑐𝑐′�  is the average 

concrete compressive strength of the two concrete batches (𝑓𝑓𝑐𝑐′� =5350 psi [36.9 MPa]). 

Nomalized values of the cracking and peak torsional moment (𝑇𝑇𝑐𝑐𝑝𝑝�  and 𝑇𝑇𝑓𝑓�, respectively) 

are listed in Table 4. For the strengthened beams, Table 4 also summarizes the increase in 

normalized cracking and peak torsional moment and twist per unit length relative to the 

corresponding normalized value of the control beam. 

Table 4 shows that the normalized cracking torsional moment for all strengthened 

beams was larger than that of the control beam. The largest increase was for beam N-P-4-

C-2 due to the confinement effect of the two layers of fibers with 90° orientation. With 

the exception of beam N-P-3-S-1, with a 3-sided wrapping configuration, the normalized 

peak torsional moment of all strengthened beams was larger than that of the control 

beam. The largest increase in normalized peak torsional moment was achieved by beam 

N-P-4-C-2 with two layers of fibers with 90° fiber orientation.  

 

3.2 TORSIONAL BEHAVIOR AND MODE OF FAILURE 

3.2.1 Control Beam. The torsional behavior and mode of failure of the control 

beam is shown in Figure 8. The ascending region of the normalized torsional moment-

twist per unit length curve in Figure 8a can be described by three stages: an initial linear 
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behavior with high torsional stiffness until cracking of concrete, then an increase in twist 

angle without increasing torsional moment due to redistribution of forces from the 

concrete to the internal steel reinforcement, followed by a non-linear behavior with a 

reduction in torsional stiffness until the normalized peak torsional moment is achieved. 

The post-peak response can be described as gradual reduction in torsional moment with 

increasing twist per unit length. 

The cracking pattern of the control beam was characterized by the formation 

spiral diagonal cracks around the perimeter of the beam (see Figure 8b). The inclination 

of the major cracks was approximately 45° with respect to the beam longitudinal axis. 

Failure of the control beam was due to crushing of the concrete struts at the mid-length of 

the test region.   

3.2.2 Strengthened Beams with 3-Sided Wrapping Configurations. Figure 9 

shows the 𝑇𝑇�-ψ response of the strengthened beams with 3-sided wrapping, i.e., beams N-

P-3-S-1, N-P-3-45S-1, and N-P-3-C-1, along with the control beam for comparison. Only 

slight differences in normalized cracking and peak torsional moment relative to the 

control beam were achieved, regardless of fiber orientation.  

The mode of failure of the strengthened beams with 3-sided wrapping 

configurations was the same as that of the control beam, except the location of failure 

was near the beam restrained end, and failure was followed by concrete cover spalling 

with the composite strips still attached (Figure 10). Excessively wide concrete cracks, 

oriented between 42° and 47° with respect to the longitudinal axis of the beam, were 

concentrated on the unwrapped beam face near the end of the beam. This damage led to 

premature failure of beam N-P-3-45S-1 with a slightly lower normalized peak torsional 



www.manaraa.com

93 
 

moment (3%) compared to the control beam. During loading, the slippage of the fibers 

relative to the matrix was observed at the ends of the fiber sheets. The orientation of the 

fibers did not play a significant role in the behavior of the strengthened beams with 3-

sided wrapping configurations due to the fact that PBO-FRCM-concrete joints exhibit 

significant fiber slippage in the formation of the bond mechanism [39]. This fiber 

slippage is not restrained in the case of a 3-sided wrapping configuration without 

sufficient anchorage.  

3.2.3 Strengthened Beams with 4-Sided Wrapping Configurations and One 

Layer of Fibers. The 𝑇𝑇�-ψ response of the beams strengthened with 1-layer, 4-sided 

wrapping configurations (beams N-P-4-S-1, N-P-4-45S-1, N-P-4-8S-1, N-P-4-0C-1, and 

N-P-4-C-1), along with the control beam, is shown in Figure 11.  Comparing the response 

of beam N-P-4-0C-1, with fibers oriented parallel to the longitudinal axis of the beam, 

with that of the control beam indicates that the 0° orientation was ineffective for 

increasing the normalized peak torsional moment, although it did increase the normalized 

cracking torsional moment (1.22 times that of the control beam). On the other hand, beam 

N-P-4-C-1, with fibers oriented in the 90° direction, had larger normalized cracking and 

peak torsional moments than that of the control beam (1.33 and 1.62 times, respectively).  

The mode of failure and the failure location of beams with 4-sided wrapping 

configurations varied based on the wrapping scheme and fiber orientation as shown in 

Figure 12. The major cracks were oriented between 40° and  48° with respect to the 

longitudinal axis of the beam. For N-P-4-S-1, N-P-4-8S-1 and N-P-4-C-1, with 90° fiber 

orientation, fiber rupture followed by concrete strut crushing due to loss of confinement 

governed the failure, which occurred at mid-length, the loading end, and the restrained 
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end, respectively (Figures 12a, c, and e). The external layer of the matrix exhibited fine 

cracks during the test, which indicates slippage of the fibers relative to the cementitious 

matrix. For beams N-P-4-45S-1 and N-P-4-0C-1, with 45° and 0° fiber orientation 

respectively, failure initiated by debonding of the fibers at the loading end followed by 

crushing of the concrete struts (Figure 12b, and d).  

It is interesting to note that results of beams strengthened with FRP composite 

showed that the 45° fiber orientation is more effective than the 90° orientation since the 

inclined fibers are generally perpendicular to the diagonal concrete cracks [26]. In this 

study, however, strips oriented at 90° were more effective at increasing the cracking and 

peak torsional moment than those oriented at 45° due to premature debonding failure 

mode of the beam with inclined strips.  Other studies have found that fibers oriented at 0° 

were able to contribute to the torsional strength of RC members [40]. As discussed in 

Section 2.2, even though beams N-P-4-45S-1 and N-P-4-0C-1 had a continuous wrapping 

configuration along the length of the test region, the fiber sheets were effectively 

unanchored at the ends of the test region, which resulted in premature failure of these 

beams. It is possible that the lower mechanical properties of the mortar matrix for these 

specimens (Batch 2, see Table 3) had an influence on the load at which debonding 

occurred.  Further studies are needed to determine a suitable anchorage system to prevent 

the debonding failure of fibers with 45° and 0° orientations. The influence of fiber 

orientation is discussed further in Section 4. 

3.2.4 Strengthened Beams with 4-Sided Wrapping Configurations and Two 

Layers of Fibers. Figure 13 shows the 𝑇𝑇�-ψ response of beams strengthened with 2-layer, 

4-sided wrapping configurations (beams N-P-4-0/90C-2 and N-P-4-C-2), along with the 
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response of the control beam. The normalized cracking and peak torsional moments of 

beam N-P-4-0/90C-2 were 1.48 and 1.80 times those of the control beam. The normalized 

cracking and peak torsional moments of beam N-P-4-C-2 were 1.58 and 2.09 times those 

of the control beam. The increase in 𝑇𝑇𝑐𝑐𝑝𝑝�  and  𝑇𝑇𝑓𝑓� for beam N-P-4-C-2 was larger than for 

beam N-P-4-0/90C-2 due to the confinement effect provided by the two layers of 

wrapping. The increase in  𝑇𝑇𝑐𝑐𝑝𝑝�  and  𝑇𝑇𝑓𝑓� for beam N-P-4-C-2 was also larger than that for 

beam N-P-4-C-1 (1.33 and 1.62 times that of the control beam, respectively, see Section 

3.2.3) due to the increased number of fiber layers (two versus one, respectively).  

 Debonding of the inner composite layer (0°) from the concrete substrate at the 

restrained end followed by concrete strut crushing governed the failure of beam N-P-4-

0/90C-2 (Figure 14a). Fiber rupture followed by concrete strut crushing due to loss of 

confinement governed the failure of beam N-P-4-C-2 (Figure 14b). The major cracks 

were oriented between 42°and 45° with respect to the longitudinal axis for beams N-P-4-

0/90C-2 and N-P-4-C-2, respectively. 

 

3.3 STRAINS IN THE INTERNAL AND EXTERNAL REINFORCEMENT  

The applied torsional moment versus strain measured in the internal transverse 

reinforcement (stirrups) εt and externally bonded composite εf is shown in Figures 15 and 

16, respectively. The values of strain in the figures are from the strain gages that recorded 

the maximum corresponding values at the peak torsional moment. Strain measurements 

are plotted until the end of the test or until the strain gage malfunctioned. Values of the 

cracking and ultimate torsional moment are indicated in each graph. Also, values of the 

yield strain of the stirrups εty determined from the tensile coupons (Section 2.1) are 



www.manaraa.com

96 
 

shown in Figure 15. Figures 15 and 16 show that the strain in each type of reinforcement 

was small until concrete cracking occurred, then the strain increased rapidly after that 

point. The FRCM composite started to contribute to the torsional resistance once 

torsional cracks in the concrete formed and propagated (see Figure 16). 

The maximum strains measured in the internal reinforcement (transverse and 

longitudinal reinforcing steel bars) and external reinforcement (FRCM composite) at the 

peak torsional moment and at the normalized peak torsional moment of the control beam 

are summarized in Table 5.  The maximum strain in the stirrups varied based on the 

external reinforcement fiber orientation and the mode of failure. For strengthened beams 

with 4-sided 90° fiber orientation, the strains in the stirrups and longitudinal bars at the 

peak torsional moment were larger than those of the control beam. On the other hand, 

values of strain for the strengthened beams with 4-sided 45° or 0° fiber orientation, which 

failed due to debonding of the composite (i.e., beams N-P-4-45S-1 and N-P-4-0C-1), 

were lower than those of the control beam. In fact, beams N-P-3-45S-1, N-P-4-45S-1, 

and N-P-4-0C-1 were the only strengthened beams in which yielding of the stirrups did 

not occur (see Table 5) because premature failure occurred due to either damage of the 

concrete struts (beam N-P-3-45S-1) or debonding of the composite (beams N-P-4-45S-1 

and N-P-4-0C-1).  

The maximum strain in the FRCM composite fibers varied based on the fiber 

orientation and the mode of failure. The effect of confinement can be seen clearly at the 

early loading stages corresponding to the normalized peak torsional moment of the 

control beam (Table 5). Beams with 3-sided wrapping configurations had higher strain 

values due to slippage of the fibers at the crack locations, while very small strain values 
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were recorded for beams with 4-sided wrapping configurations. Furthermore, higher 

values of strain were achieved in strengthened beams with 4-sided 90° orientation at the 

peak torsional moment due to the full utility of the fibers until rupture. Values of strain 

measured for beam N-P-4-0C-1, with 0° orientation, were lower than that of beam N-P-4-

C-1, with 90° orientation, since the contribution of the composite in the longitudinal 

direction to the torsional strength was small as discussed in Section 3.2.3.  

 

3.4 LONGITUDINAL ELONGATION RESPONSE 

The longitudinal elongation of all beams is shown in Figure 17. As expected, all 

beams elongated longitudinally after reaching the cracking torsional moment due to the 

formation and widening of concrete cracks. The elongation values measured at the peak 

torsional moment and at the normalized peak torsional moment of the control beam are 

summarized in Table 6.     

The largest values of elongation at the peak torsional moment occurred in beams 

N-P-4-S-1 and N-P-4-C-2 (0.21 in. [5.4 mm] for both beams). In real structures, and 

especially monolithic concrete construction, this elongation may be restrained by the 

supporting members. However, the effects of this elongation (or its restraint) may require 

additional consideration. Results in Table 6 show that at the peak torsional moment of the 

control beam, the strengthened beams with a 3-sided wrapping configuration exhibited 

the same elongation as that of the control beam except for beam N-P-3-45S-1, which 

failed at torsional moment slightly lower than the control beam. In other words, the 

presence of the 3-sided jacket did not influence the beam elongation. For beams with a 4-

sided wrapping configuration, the beam elongation at the torsional moment 
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corresponding to the peak torsional moment of the control beam reduced by 18-92% 

relative to that of the control beam. This reduction is due to the concrete crack arresting 

capability of the fibers, which prevented the beams from elongating at the early loading 

stages.    

 

4. EFFECT OF FIBER ORIENTATION 

As discussed in Section 1, most experimental work on torsional strengthening of 

RC beams with externally bonded composites reported in the literature is with beams that 

are wrapped with a fiber orientation of 90°. Few studies have investigated the effects of 

different composite fiber orientations. In this section, the effect of composite fiber 

orientation on the torsional strength is examined. Results of beams strengthened with 

FRCM composites from the current study are compared with those from experimental 

studies by Panchacharam and Belarbi [25] and Ghobarah et al. [26], who studied the 

torsional response of RC beams strengthened with GFRP and CFRP composites. Beams 

selected from those studies and from the current study for the comparison are from series 

in which the parameter varied was fiber orientation. The selected beams, strengthening 

configurations, and experimental results are summarized in Table 7.  

Figure 18 shows the increase in torsional strength relative to the corresponding 

unstrengthened beam for strengthened beams with different fiber orientations, where the 

different series are indicated with different markers. It should be noted that the values of 

torsional strength increase are not comparable among the different series due to different 

geometrical and material properties of the beams and strengthening systems, as well as 

different strengthening configurations. Comparing the results of beams strengthened with 
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0° and 90° fiber orientations, Figure 18 shows that the trend for PBO-FRCM composite-

strengthened beams is the same as for GFRP-strengthened beams, i.e., the 90° fiber 

orientation is more effective in increasing the torsional strength than the 0° orientation. 

On the other hand, comparing the results of beams strengthened with 45° and 90° fiber 

orientations, Figure 18 shows that the 45° fiber orientation is more effective than the 90° 

orientation for CFRP-strengthened beams, while PBO-FRCM composite-strengthened 

beams exhibit the opposite trend. As discussed in Section 3.2.3, the 45° fiber orientation 

should be more effective than the 90° orientation since the inclined fibers are generally 

perpendicular to the diagonal cracks [26].  However, the contribution of the PBO-FRCM 

composite to the torsional strength was much lower for the beam with 45° strips (N-P-4-

45S-1) than the beam with 90° strips (N-P-4-S-1) due to the debonding of the composite 

from the concrete substrate at the end of the strip, which occurred since the fiber sheets 

were effectively unanchored at the ends of the test region. As discussed in Section 2.2, a 

length of approximately 10 in. (260 mm) is needed to fully develop the load-carrying 

capacity of the PBO-FRCM concrete interface (Section 2.2), however considering a 45° 

crack orientation and the geometry of the beam, the available length beyond the crack 

may be considerably less (see Figure 12b, for example). Therefore, this condition 

contrasted the potential benefits from optimizing the fiber orientation and led to the 

underutilization of the composite. This observation emphasizes the need for suitable 

anchorage systems for beams strengthened with PBO-FRCM composite without adequate 

overlap at the ends of the fiber sheets (in the fiber direction).  
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5. CONCLUSIONS 

This paper discussed the influence of the fiber orientation, fiber continuity, and 

number of composite layers on the torsional strength, torsional moment-twist per unit 

length response, and mode of failure of PBO-FRCM strengthened concrete beams 

subjected to pure torsion. Strains measured in the internal and external reinforcement and 

the beam elongation with respect to the beam longitudinal axis were evaluated. 

Furthermore, the efficiency the PBO-FRCM composite material was compared with that 

of CFRP and GFRP composites from studies in the literature. The main conclusions from 

this study are summarized below: 

1. The normalized cracking torsional moment of all strengthened beams was larger 

than that of the unstrengthened beam, with a maximum increase of 58%. The 

maximum increase in the normalized peak torsional moment relative to control 

beam was 109%. These results indicate that PBO-FRCM composite can be a 

suitable material for torsional strengthening of RC beams.   

2. The normalized cracking torsional moment of the beam with one layer of fibers 

with 4-sided 0° fiber orientation (parallel to the longitudinal axis of the beam) was 

increased relative to that of the control beam, while no significant increase in the 

normalized peak torsional moment was observed. However, the normalized 

cracking and peak torsional moments were improved significantly for beams with 

4-sided, 90° fiber orientation. 
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3. No significant increase in normalized cracking or peak torsional moment was 

achieved for beams with 3-sided wrapping configuration, regardless of fiber 

orientation or wrapping configuration.  

4. Concrete crushing governed the failure of the unstrengthened control beam and 

the strengthened beams with 3-sided wrapping configurations.  Fiber rupture 

followed by concrete crushing and preceded by stirrup yielding governed the 

failure for beams strengthened with 1-layer, 4-sided, 90° fiber orientation and the 

beam strengthened with 2-layers, 4-sided, 90° fiber orientation. 

5. Debonding of the fibers from the concrete substrate governed the failure of the 

strengthened beams with 4-sided, 45° strips, the strengthened beam with 4-sided, 

0° continuous wrapping, and the strengthened beam with two layers (0°/90°) fiber 

orientation. 

6. The FRCM composite reduced the longitudinal elongation of the strengthened 

beams up to 92% compared to the control beam at the peak load of the control 

beam. 

7. Similar to GFRP-strengthened beams, the 90° fiber orientation was more effective 

in increasing the torsional strength than the 0° orientation for PBO-FRCM 

strengthened beams.  On the other hand, the 45° fiber orientation was more 

effective than the 90° orientation for CFRP-strengthened beams, while PBO-

FRCM composite-strengthened beams exhibited the opposite trend. Debonding of 

the PBO-FRCM composite fibers at the ends of the strips contrasted the potential 

benefits from optimizing the fiber orientation and led to the underutilization of the 

composite.  
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8. Further investigations are needed to select a suitable anchorage system for beams 

strengthened with PBO-FRCM composite without overlap at the ends of the fiber 

sheets.  
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Table 1. Concrete mixture proportions.                                   
Material Quantity 

Water, lb/yd3 (kg/m3) 270 (160) 
Cement Type I/II, lb/yd3 (kg/m3) 517 (307) 
Coarse Aggregate, lb/yd3 (kg/m3) 1700 (1009) 
Fine Aggregate, lb/yd3 (kg/m3) 1450 (860) 
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Table 2. Measured concrete and steel reinforcement material properties.                                      

Material Concrete Steel reinforcing bars 
Batch 1 Batch 2 No. 3  No. 5 

Compressive strength, psi (MPa) 5700 
(39.3) 

5000 
(34.5) -- -- 

Splitting tensile strength, psi 
(MPa) 460 (3.2) 400 (2.8) -- -- 

Modulus of elasticity ksi (GPa) 4150 
(28.6) 

4150 
(28.6) 29000 (200) 28000 

(193) 
Yield strength, ksi (MPa) -- -- 65.8 (454) 68.0 (469) 

Ultimate strength, ksi (MPa) -- -- 104 (717) 107 (738) 
 

 

 

 

Table 3. Measured PBO-FRCM composite material properties. 
PBO fibers 

Ultimate tensile strength, ksi (MPa) 440 (3015) 
Modulus of elasticity, ksi (GPa) 29,900 (206) 
Ultimate strain, in./in. (mm/mm) 0.0145 (0.0145) 

Mortar 
 Batch 1 Batch 2 

Compressive strength, psi (MPa) 3600 (24.8) 2200 (15.2) 
Splitting tensile strength, psi (MPa) 670 (4.6) 520 (3.6) 
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Table 4. Summary of test results. 

Beam 

Concrete 
batch and 
composite 

matrix 
batch 

Tcr k-in. 
(kN-m) 

 

𝑇𝑇𝑐𝑐𝑝𝑝�   k-in. 
(kN-m) 

𝑇𝑇𝑐𝑐𝑝𝑝�

𝑇𝑇𝑐𝑐𝑝𝑝,𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑝𝑝𝑐𝑐�  
ψcr 

deg./in. 
(deg./m) 

𝜓𝜓𝑐𝑐𝑝𝑝
𝜓𝜓𝑐𝑐𝑝𝑝,𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑝𝑝𝑐𝑐𝑠𝑠

 Tu k-in. 
(kN-m) 

𝑇𝑇𝑓𝑓� k-in. 
(kN-m) 

𝑇𝑇𝑓𝑓�

𝑇𝑇𝑓𝑓,𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑝𝑝𝑐𝑐𝑠𝑠�  
ψu 

deg./in. 
(deg./m) 

𝜓𝜓𝑓𝑓
𝜓𝜓𝑓𝑓,𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑝𝑝𝑐𝑐𝑠𝑠

 

Control 1 91.8 
(10.4) 

88.9 
(10.0) -- 0.0042 

(0.165) -- 148.7 
(16.8) 

144.0 
(16.4) -- 0.085 

(3.346) -- 

N-P-3-S-1 1 102.3 
(11.6) 

99.1 
(11.2) 1.11 0.0020 

(0.079) 0.48 160.3 
(18.1) 

155.3 
(17.5) 1.08 0.076 

(2.992) 0.89 

N-P-3-45S-1 2 90.6 
(10.2) 

93.7 
(10.6) 1.05 0.0049 

(0.193) 1.17 134.5 
(15.2) 

139.1 
(15.7) 0.97 0.065 

(2.559) 0.76 

N-P-3-C-1 2 97.3 
(11.0) 100.7 (11.4) 1.14 0.0027 

(0.106) 0.64 140.3 
(15.9) 

145.1 
(16.4) 1.01 0.068 

(2.677) 0.8 

N-P-4-S-1 1 126.5 
(14.3) 122.5 (13.8) 1.38 0.0034 

(0.134) 0.81 193.2 
(21.8) 

187.1 
(21.1) 1.30 0.245 

(9.646) 2.88 

N-P-4-45S-1 2 109.6 
(12.4) 113.3 (12.8) 1.27 0.0029 

(0.114) 0.69 163.7 
(18.5) 

169.4 
(19.1) 1.18 0.074 

(2.913) 0.87 

N-P-4-8S-1 2 90.0 
(10.2) 

93.1 
(10.5) 1.05 0.0027 

(0.106) 0.64 179.1 
(20.2) 

185.2 
(20.9) 1.29 0.227 

(8.937) 2.67 

N-P-4-0C-1 2 105.3 
(11.9) 108.9 (12.3) 1.22 0.0037 

(0.146) 0.88 149.9 
(16.9) 

155.1 
(17.5) 1.08 0.053 

(2.087) 0.62 

N-P-4-C-1 1 121.6 
(13.7) 117.8 (13.3) 1.33 0.0041 

(0.161) 0.98 240.4 
(27.2) 

232.9 
(26.3) 1.62 0.230 

(9.055) 2.71 

N-P-4-(0/90)C-
2 2 125.5 

(14.2) 129.8 (14.7) 1.48 0.0042 
(0.165) 1.00 249.3 

(28.2) 
257.9 
(29.1) 1.80 0.223 

(8.780) 2.62 

N-P-4-C-2 1 144.4 
(16.3) 139.9 (15.8) 1.58 0.0040 

(0.157) 0.95 310.6 
(35.1) 

300.9 
(34.0) 2.09 0.241 

(9.488) 2.84 

Note: Tcr= cracking torsional moment; 𝑇𝑇𝑐𝑐𝑝𝑝�= normalized cracking torsional 
moment; 𝑇𝑇𝑐𝑐𝑝𝑝,𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑝𝑝𝑐𝑐𝑠𝑠� = normalized cracking torsional moment of control beam; ψcr= 
cracking twist per unit length; ψcr,control= cracking twist per unit length of control beam; 
Tu= peak torsional moment; 𝑇𝑇𝑓𝑓�= normalized peak torsional moment; 𝑇𝑇𝑓𝑓,𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑝𝑝𝑐𝑐𝑠𝑠� = 
normalized peak torsional moment of control beam; ψu= peak twist per unit length; 
ψu,control= peak twist per unit length of control beam. 
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Table 5. Maximum measured reinforcement strains.  

 

Strains measured at 
normalized peak torsional 
moment of control beam,  

𝑇𝑇𝑓𝑓,𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑝𝑝𝑐𝑐𝑠𝑠�  

Strains measured at peak 
torsional moment Tu 

Beam εt (%) εl (%) εf (%) εt (%) εl (%) εf (%) 
Control 0.252 0.165 -- 0.252 0.165 -- 

N-P-3-S-1 0.231 0.140 0.365 0.232 0.183 0.431 
N-P-3-45S-1 -- -- -- 0.208 0.183 0.367 
N-P-3-C-1 0.224 0.444 0.359 0.224 0.537 0.359 
N-P-4-S-1 0.050 0.108 0.004 0.295 0.287 1.026 

N-P-4-45S-1 0.095 0.111 0.435 0.164 0.177 0.562 
N-P-4-8S-1 0.069 0.166 0.000 0.386 0.347 0.506 
N-P-4-0C-1 0.162 0.141 0.030 0.192 0.164 0.210 
N-P-4-C-1 0.058 0.119 0.026 0.275 0.638 0.822 

N-P-4-(0/90)C-2 0.108 0.085 0.012 0.345 0.631 0.848 
N-P-4-C-2 0.016 0.104 0.005 0.305 1.137 0.653 

Note: 𝑇𝑇𝑓𝑓,𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑝𝑝𝑐𝑐𝑠𝑠� = normalized peak torsional moment of control beam; Tu= peak torsional 
moment; εt= strain measured in the internal transverse reinforcement (stirrups); εl= strain 
measured in the internal longitudinal reinforcement; εf= strain measured in the externally 
bonded composite. 
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Table 6. Beam longitudinal elongation.  

Beam 

Longitudinal 
elongation at 
normalized 

peak torsional 
moment of 

control beam,  
T=𝑇𝑇𝑓𝑓,𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑝𝑝𝑐𝑐𝑠𝑠�  

% Reduction 
relative to 

unstrengthened 
beam 

Longitudinal 
elongation at 
T=Tu in. (mm) 

% Increase 
relative to 

unstrengthened 
beam (at peak 

torsional 
moment) 

Control 0.077 (1.96) -- 0.077 (1.96) -- 
N-P-3-S-1 0.076 (1.93) -- 0.101 (2.57) 25 

N-P-3-45S-1 (Note 1) -- 0.072 (1.83) -- 
N-P-3-C-1 0.079 (2.01) -- 0.085 (2.16) 13 
N-P-4-S-1 0.063 (1.63) 18 0.213 (5.41) 163 

N-P-4-45S-1 0.058 (1.47) 25 0.095 (2.41) 25 
N-P-4-8S-1 0.056 (1.42) 27 0.184 (4.67) 125 
N-P-4-0C-1 0.058 (1.47) 25 0.070 (1.78) -- 
N-P-4-C-1 0.029 (0.74) 62 0.176 (4.47) 125 

N-P-4-(0/90)C-2 0.027 (0.69) 65 0.190 (4.83) 138 
N-P-4-C-2 0.006 (0.15) 92 0.213 (5.41) 163 

Note: 1. Peak torsional moment is lower than that of the control beam. 
𝑇𝑇𝑓𝑓,𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑝𝑝𝑐𝑐𝑠𝑠� = normalized peak torsional moment of control beam; Tu= peak torsional 
moment. 
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Table 7. Summary of experimental results of strengthened beams with different fiber 
orientations from current study, Panchacharam and Belarbi [25], and Ghobarah et al. 

[26]. 

Author Beam 
Composite type 
and wrapping 
configuration 

Tu k-in. 
(kN-m) 

% increase in Tu 
relative to 

unstrengthened 
beam 

% change in Tu 
relative to 90° 
configuration 

Current study 

N-P-4-S-1 PBO-FRCM 90° 
strips 

187.1 
(21.1)* 30 -- 

N-P-4-45S-1 PBO-FRCM 45° 
strips 

169.4 
(19.1)* 18 -12 

N-P-4-C-1 PBO-FRCM 90° 
continuous 

232.9 
(26.3)* 62 -- 

N-P-4-0C-1 PBO-FRCM 0° 
continuous 

155.1 
(17.5)* 8 -54 

Panchachara
m and Belarbi 

[25] 

A90W4 GFRP 90° 
continuous 398.3 (45) 149 -- 

A0L4 GFRP 0° 
continuous 256.7 (29) 62 -87 

Ghobarah et 
al. [26] 

C2 CFRP 90° strips 123.6 
(14.0) 27 -- 

C6 CFRP 45° strips 148.9 
(16.8) 55 28 

Note: *Normalized by the factor �
𝑓𝑓𝑐𝑐′�

𝑓𝑓𝑐𝑐′
�   

Tu= peak torsional moment. 
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Figure 1. PBO unbalanced fiber net. 

 

 

 

Figure 2. Beam reinforcement layout and dimensions. 
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Figure 3. Schematic configuration of the RC beams: a) control beam, b) one layer, 3-
sided, 90°, strips (N-P-3-S-1), c) one layer, 3-sided, 45°, strips (N-P-3-45S-1), d) one 

layer, 3-sided, 90°, continuous (N-P-3-C-1), e) one layer, 4-sided, 90°, strips (N-P-4-S-1), 
f) one layer, 4-sided, 45°, strips (N-P-4-45S-1), g) one layer, 4-sided, 90°, strips (N-P-4-

8S-1), h) one layer, 4-sided, 0°, continuous (N-P-4-0C-1), i) one layer, 4-sided, 90°, 
continuous (N-P-4-C-1), j) two layers, 4-sided, 0°/90°, continuous (N-P-4-0/90C-2), k) 

two layers, 4-sided, 90°, continuous (N-P-4-C-2). 
 

 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(k) (j) 
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Figure 4. FRCM-composite installation process: a) sand blasted concrete surface, b) 
adding the first layer of matrix, c) applying the fibers, d) adding the second layer of 

matrix, e) strain gage locations. 
  

 

 

Figure 5. Torsion test setup. 

(a) (b) (c) 

(d) (e) 
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Figure 6. External instrumentation on a) east side, b) west side of the beam. 

 

 

 

 

 

 

 

 

 

Figure 7. Strain gage locations: a) on the steel reinforcing bars, b) on the PBO-FRCM 
composite. 

 

 

 

 

 

(a) (b) 

(a) (b) 
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Figure 8. Experimental results for control beam: a) normalized torsional moment 𝑇𝑇�-twist 

per unit length ψ response, b) mode of failure. 
 

 

 

Figure 9. Normalized torsional moment 𝑇𝑇�-twist per unit length ψ responses for 
strengthened beams with 3-sided wrapping configurations.  

 

(a) (b) 
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Figure 10. Mode of failure for strengthened beams with 3-sided wrapping configurations: 
a) N-P-3-S-1, b) N-P-3-45S-1, c) N-P-3-C-1. 
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Figure 11. Normalized torsional moment 𝑇𝑇�-twist per unit length ψ responses for 
strengthened beams with 1-layer, 4-sided wrapping configurations. 
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Figure 12. Mode of failure for strengthened beams with 1-layer, 4-sided wrapping 
configurations: a) N-P-4-S-1, b) N-P-4-45S-1, c) N-P-4-8S-1, d) N-P-4-0C-1, e) N-P-4-

C-1. 
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Figure 13. Normalized torsional moment 𝑇𝑇�-twist ψ per unit length responses for 
strengthened beams with 2-layer, 4-sided wrapping configurations. 

 

 

 

Figure 14. Mode of failure for strengthened beams with 2-layer, 4-sided wrapping 
configurations: a) N-P-4-0/90C-2, b) N-P-4-C-2. 
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Figure 15. Torsional moment T versus stirrup strain.  

 

 

 

 

Cracking torsional moment 

Peak torsional moment 
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Figure 16. Torsional moment T versus FRCM composite fiber strain. 
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Peak torsional moment 
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Figure 17. Torsional moment T versus longitudinal elongation. 

Cracking torsional moment 

Peak torsional moment 
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Figure 18. Influence of composite fiber orientation (with respect to the longitudinal axis 
of the beam) on the increase in torsional strength relative to the unstrengthened condition. 
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IV. FINITE ELEMENT STUDY ON THE BEHAVIOR OF RC BEAMS 
STRENGTHENED WITH PBO-FRCM COMPOSITE UNDER TORSION 

  
Meyyada Y. Alabdulhady, Lesley H. Sneed, Omar I. Abdelkarim, Mohamed A. 

ElGawady 

 

ABSTRACT 

This paper describes the results of numerical simulation performed to investigate 

the torsional behavior of reinforced concrete (RC) beams strengthened with externally 

bonded fiber reinforced cementitious matrix (FRCM) composite.  A nonlinear finite 

element analysis was performed using LS-DYNA. FE predictions were in reasonable 

agreement with experimental results of FRCM-strengthened beams under torsional 

loading in terms of failure mode, torsional strength, and corresponding twist per unit 

length. A parametric study was also carried out to study the influence of concrete 

compressive strength and FRCM composite strip width and spacing. Results showed that 

the torsional strength increases with increasing concrete compressive strength when 

failure is governed by crushing of the concrete strut. When failure is governed by fiber 

rupture, the torsional strength was not sensitive to concrete compressive strength. The 

parametric study also showed that the torsional strength increases with increasing fiber 

reinforcement ratio, although the increase in torsional strength is not directly proportional 

to the increase in fiber reinforcement ratio.  

 

HIGHLIGHTS 

• Torsional behavior of RC beams strengthened with PBO-FRCM composite was 

evaluated numerically. 
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• Torsional behavior in terms of strength and failure mode was validated with 

experimental results. 

• Strains measured in the stirrups and fibers were evaluated and compared with 

experimental results. 

• The influence of different parameters on the torsional strength and behavior were 

studied. 

 

KEYWORDS  

Finite element analysis; PBO-FRCM composite; parametric study; RC beams; 

strengthening; torsion. 

 

1. INTRODUCTION 

In the past several decades, investigators have explored experimentally and 

numerically the behavior of reinforced concrete (RC) beams strengthened with externally 

bonded fiber reinforced polymer (FRP) composite under different loading conditions. 

While significant efforts have been made to study the response of FRP-strengthened RC 

members subjected to flexure, shear, and axial loading, fewer studies have focused on the 

response of members subjected to torsional loading. Ghobarah et al. [1] studied the 

torsional behavior of rectangular RC beams strengthened with carbon FRP (CFRP) or 

glass FRP (GFRP) composite. Panchacharam and Belarbi [2] tested GFRP-strengthened 

RC beams with a square cross-section and proposed equations to calculate the cracking 

torque and torsional strength of the strengthened beams. Salom et al. [3] studied the 

effectiveness of CFRP composite on increasing the torsional strength of RC spandrel 



www.manaraa.com

126 
 

beams with an L-shaped cross-section. Hii and Al-Mahaidi [4] used photogrammetry 

measurements to study the concrete cracking behavior and aggregate interlocking action 

of CFRP-strengthened RC beams under torsional loading. Hii and Al-Mahaidi [5] tested 

CFRP-strengthened RC beams with solid and box sections under torsional loading and 

compared the results with those obtained from the nonlinear finite element program 

DIANA [6]. Chalioris [7] tested CFRP-strengthened rectangular and flanged RC beams 

with no internal transverse reinforcement to evaluate the contribution of the composite to 

the torsional strength. Ameli et al. [8] tested CFRP and GFRP-strengthened RC beams 

with a rectangular cross-section and compared the results with those obtained from the 

nonlinear finite element program ANSYS [9]. Deifalla et al. [10] experimentally 

investigated the effectiveness of CFRP composite on increasing the torsional strength of 

RC beams with various cross-sectional shapes. Ganganagoudar et al. [11] introduced a 

modified softened membrane model for torsion, taking into account the influence of 

externally bonded FRP on the compressive behavior of cracked concrete, and compared 

the results with those obtained from experiments and a nonlinear finite element study 

using ABAQUS [12]. Elwan [13] conducted a parametric study on the effects of 

volumetric ratio of composite, number of composite layers, composite strength, and U-

jacket configuration on the torsional behavior of rectangular and T-shaped RC beams 

using the nonlinear finite element program ANSYS [9].  Other researchers have 

examined the response of FRP-jacketed RC columns with square, oval, or hollow circular 

cross-sections subjected to torsional loading [14-18]. 

While FRP composites have been proven to be effective in different strengthening 

applications of RC structures, certain characteristics including their difficulty to install 
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onto wet surfaces or in low temperatures, low fire resistance, low glass transition 

temperature, and lack of vapor permeability, which are associated with the use of organic 

matrix, have prompted the development of new innovative composite strengthening 

materials. One promising material is fiber reinforced cementitious matrix (FRCM) 

composites. FRCM composites avoid the toxicity of the epoxy resin and overcome some 

of the aforementioned limitations of using FRP strengthening material. FRCM composite 

material is comprised of continuous fibers in an inorganic mortar matrix that is more 

compatible with concrete and masonry substrates, can be applied onto wet surfaces, and 

has better heat resistance than FRP composites. Because the matrix is a mortar, the 

resulting thickness of FRCM composites is generally larger than that of FRP composites 

(on the order of 5 times). Different types of fibers including carbon, glass, aramid, basalt, 

steel, and polyparaphenylene benzobisoxazole (PBO) have been used in FRCM 

composites.  FRCM composites have been studied for flexural strengthening [e.g., 19-

23], shear strengthening [e.g., 24-28], and confinement applications [e.g., 29-30] for RC 

members, but studies in the technical literature on their use for torsional strengthening are 

extremely limited [31].  

In order to gain a better understanding of the torsional behavior of FRCM-

strengthened RC beams, the main objective of this paper is to evaluate numerically the 

response of PBO-FRCM composite-strengthened RC beams with different strengthening 

schemes. The simulation is performed with the software program package LS-DYNA 971 

R3 [32]. Torsional strength, torque-twist per unit length response, and strains in the 

internal and external reinforcement are evaluated and compared with experimental results 

to validate the model and determine its accuracy. The model is further used for a 
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parametric study in order to shed light on the influence of concrete compressive strength 

and composite strip width and spacing on the torsional response of FRCM-strengthened 

RC beams. 

 

2. EXPERIMENTAL PROGRAM 

Experimental results of six RC beams subjected to torsional loading were used for 

model validation. Five of the beams were strengthened, and one beam was 

unstrengthened and was used as the control specimen. Four of the six beams were 

included in the first phase of an experimental campaign previously published by the 

authors [31]. The beams selected from [31] for the purpose of the numerical simulation in 

this paper included the control beam and strengthened beams that were fully wrapped 

around the cross-section. Two additional strengthened beams included in this paper were 

included in the second phase of the experimental campaign, which involved different test 

variables. The experimental program for both phases is summarized briefly in this 

section. Additional information is provided in [31]. 

 

2.1 EXPERIMENTAL DESIGN 

The beams were designed based on the ACI 318 code provisions [33]. All beams 

had a rectangular cross-section with the same nominal dimensions of b=8 in. (203.2 mm) 

wide × h=12 in. (304.8 mm) deep × 84 in. (2133.6 mm) long and the same internal 

reinforcement. Dimensions and reinforcement details of the RC beams are shown in 

Figure 1. The beams had a test region in which the FRCM composite was applied of 

length 60 in. (1524.0 mm) that was reinforced with minimum internal steel torsional 
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reinforcement in the transverse direction in accordance with the ACI 318 code. The 

corresponding reinforcement ratios of the internal longitudinal and transverse 

reinforcement were 𝜌𝜌𝑠𝑠𝑠𝑠 = 𝐴𝐴𝑠𝑠𝑠𝑠
𝐴𝐴𝑐𝑐

= 1.29% and 𝜌𝜌𝑠𝑠𝑠𝑠 = 𝐴𝐴𝑠𝑠𝑠𝑠
𝐴𝐴𝑐𝑐

𝑝𝑝𝑠𝑠
𝑠𝑠𝑠𝑠

= 0.92%, respectively, where Asl 

is the total area of longitudinal bars, Ac is the gross concrete area (Ac=bh), Ast is area of 

one leg of a stirrup, pt is perimeter of a stirrup, and st is the center-to-center spacing of 

stirrups. The end regions of the beam (12 in. [304.8 mm] long each end) were more 

heavily reinforced internally with stirrups and externally with CFRP composite material 

(strengthened beams only, see Figure 1) with unidirectional fibers oriented perpendicular 

to the longitudinal axis of the beam to prevent failure in the clamp regions.  

Reinforcing bars in the beam specimens were No. 3 (dia. = 0.375 in. [9.5 mm], 

area = 0.11 in2 [71 mm2]) and No. 5 (dia. = 0.625 in. [15.9 mm], area = 0.31 in2 [199 

mm2]) ASTM A615 Grade 60 (Grade 420) deformed steel bars [34]. All reinforcing bars 

of the same size were produced from the same heat. Tension tests were conducted on 

three samples of each bar size to determine the mechanical properties. Table 1 shows the 

properties of the longitudinal and transverse reinforcement, which were determined based 

on the average of three coupon samples for each bar size and tested according to ASTM 

A370 [35].  

The concrete beams were constructed with normalweight concrete cast in two 

batches: Batch 1 for the phase 1 beams and Batch 2 for the phase 2 beams. The coarse 

aggregate type was crushed dolomite with 1 in. (25.4 mm) maximum aggregate size, and 

the fine aggregate was river sand. The compressive strength f’c , splitting tensile strength 

fct, and modulus of elasticity Ec of concrete were determined for each batch based on the 

average of three 4 in. (101.6 mm) diameter × 8 in. (203.2 mm) long cylinders tested at 28 



www.manaraa.com

130 
 

days in accordance with ASTM C39 [36], ASTM C496 [37], and ASTM C469 [38], 

respectively. The concrete properties are summarized in Table 1. The beams and 

cylinders were moist cured for four days under wet burlap then kept together in the 

laboratory under the same atmospheric conditions until testing.  

 

2.2 FRCM COMPOSITE 

The FRCM composite was comprised of PBO fibers with an inorganic matrix. 

The PBO fibers were in the form of a bidirectional (orthogonal) unbalanced fiber net as 

shown in Figure 2. The net was formed with rovings spaced at 0.4 in. (10 mm) and 0.8 in. 

(20 mm) on center in the primary and secondary directions, and the free spacing between 

rovings was 0.2 in. (5 mm) and 0.6 in. (15 mm), respectively. The nominal thickness of 

the fibers (which is obtained by assuming the fibers are distributed evenly over the entire 

width of the composite) in the two fiber directions was 0.0018 in. (0.046 mm) and 0.0005 

in. (0.012 mm), respectively. The weight of PBO fibers in the mesh was 0.00010 lb/in2 

(70.4 g/m2) in the primary direction and 0.000025 lb/in2 (17.6 g/m2) in the secondary 

direction, with a total weight of 0.00013 lb/in2 (88 g/m2). The total thickness of the 

composite was 0.2 in. (5 mm) per composite layer. 

The FRCM composite material properties are listed in Table 2. Tensile strength, 

ultimate strain, and elastic modulus of the fibers determined from tensile tests of the bare 

fibers were 440 ksi (3015 MPa), 0.0145, and 29,900 ksi (206 GPa), respectively [39]. 

Compressive strength f’cm and splitting tensile strength of the mortar were determined 

from a representative sample of matrix used to cast the FRCM composite using the 

average of three 2 in. (50.8 mm) diameter × 4 in. (101.6 mm) long cylinders tested at 28 
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days in accordance with ASTM C39 [36] and ASTM C496 [37], respectively. Mortar 

Batch 1 corresponds to the phase 1 beams, whereas Mortar Batch 2 corresponds to the 

phase 2 beams. 

Different wrapping schemes were used to study the torsional behavior of RC 

beams strengthened with PBO-FRCM composite. Figure 3a shows the control beam, and 

Figures 3b-f show the different wrapping schemes of the strengthened beams. All 

strengthened beams considered in this paper were fully wrapped around the perimeter. 

Two beams were strengthened with one layer of discontinuous strips, one with w=4 in. 

(101.6 mm) wide strips with s=4 in. (101.6 mm) clear spacing between strips (beam N-P-

4-S-1, Figure 3b), and the other with w=8 in. (203.2 mm) wide strips with s=4 in. (101.6 

mm) clear spacing between strips (beam N-P-4-8S-1, Figure 3c) with the fiber net 

orientated such that the primary fiber direction was perpendicular to the longitudinal axis 

of the beam. Three other beams were strengthened continuously along the test region. 

Beam N-P-4-C-1 was strengthened with one layer (Figure 3d), and beam N-P-4-C-2 was 

strengthened with two layers (Figure 3f), with the fiber net orientated such that the 

primary fiber direction was perpendicular to the longitudinal axis of the beam. Beam N-

P-4-(0/90)C-2 (Figure 3e) was strengthened with two layers of fibers, the first (inner) 

layer of fibers oriented with the primary fiber direction parallel to the longitudinal axis of 

the beam (shown in Figure 2), and the second layer of fibers oriented with primary fiber 

direction perpendicular to the longitudinal axis. 
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2.3 TEST SETUP AND INSTRUMENTATION 

The test setup is shown in Figure 4. The torque was applied to the beam through 

the loading arm with an 18 in. (457 mm) eccentricity relative to the centroid of the cross-

section by a hydraulic jack of 30 k (130 kN) capacity and measured by a load cell of 100 

k (445 kN) capacity. The reaction arm was supported by a threaded rod that was anchored 

to the reaction floor. Rollers were provided at the reaction end of the beam to allow it to 

slide freely in the longitudinal direction and allow the concrete cracks to open. Secondary 

bending effects due to the beam self weight and to application of the load were neglected. 

Restraint of warping due to the clamping effects at each end was also neglected. 

The average angle of twist per unit length was measured by a rotational variable 

differential transformer (RVDT) mounted to the east face of the beam within the test 

region with gage length of 45.5 in. (1155.7 mm). On the west face of the beam, the twist 

was determined by measuring the relative vertical displacements using two linear 

variable differential transformers (LVDTs) with spacing similar to the RVDT gage 

length. The RVDT and LVDs are shown in Figure 5a. 

A total of 17 strain gages were mounted to the longitudinal (9) and transverse (8) 

bars at the middle, quarter, and third quarter of the test region to measure strain in the 

internal reinforcement. A total of 36 strain gages were used to measure the strain in the 

FRCM fibers. The surface of the matrix was carefully abraded at the location of each 

strain gage in order to expose the fibers, and then the strain gages were mounted onto the 

fibers. The locations of the strain gages are shown in Figure 5b, c. 
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3. FINITE ELEMENT MODEL 

To study more thoroughly the torsional behavior of RC beams strengthened with 

PBO-FRCM composite material, a nonlinear finite element analysis was carried out to 

analyze the experimentally tested beams described in Section 2. The analysis was 

performed using the finite element package LS-DYNA. The validation was developed in 

order to verify the accuracy of the finite element procedure. The accuracy of the finite 

element model was determined by ensuring that the peak torque (i.e., the torsional 

strength) was reasonably close to the experimental results and that the predicted torsional 

moment-twist per unit length response followed closely the experimental response. 

 

3.1 MODEL GEOMETRY 

The modeled beam in LS-DYNA is shown in Figure 6. Model parameters, 

including mesh size and contact element type, were investigated through a sensitivity 

analysis in order to obtain the most accurate results as compared with the experimental 

values and to minimize the computational effort. Elements with 2 in. (50 mm) size in 

three directions x, y, and z (beam length, width, and depth, respectively, see Figure 6) 

were chosen. Concrete, steel plates, and the FRCM composite internal matrix layer were 

modeled using 8-nodes solid elements with constant stress element formulation. Steel 

reinforcing bars in the beam longitudinal and transverse directions were modeled using 2 

nodes beam-elements. PBO and carbon fibers were modeled as shell elements with 4 

nodes Belytschko-Tsay element formulation [40]. The solid elements for the model are 

based on a linear shape function using one point integration and hourglass control, which 

has the lowest time cost [41]. Hourglass type 5 was used with a default hourglass 
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coefficient of 0.1 to maintain modal stability. The Lagrange_In_Solid constraint 

command was used to tie steel/concrete interfaces with perfect bond, while merge 

command nodes (i.e., perfect bond) were used to connect the other elements. The 

modeled beam components are shown in Figure 7. 

 

3.2 MATERIAL MODELS 

Plasticity based material model type MAT_CONCRETE_DAMAGE_REL3 [42] 

was used to model both the concrete of the beam and the matrix of the FRCM composite. 

This material is a three-invariant model as shown in Figure 8a in which Δб is the stress 

difference which limits the second invariant of the deviatoric stress tensor, p is the 

pressure (i.e., normal stress, positive in compression), and ξ is the ratio of the tensile to 

compressive meridian [43]. The model uses three shear failure surfaces (the initial yield 

surface, the maximum yield surface, and the residual yield surface) and includes damage 

effects.  This material model can account for important features of concrete such as 

tensile fracture energy, effect of confinement, and shear dilation [43]. A summary of the 

model and its development can be found in [44]. A key feature of this model is that 

model parameters can be generated solely from the unconfined compressive strength of 

concrete [43]. Accordingly, the constitutive material parameters were automatically 

generated using the measured values of the unconfined concrete and matrix compressive 

strength, f’c and f’cm, presented in Tables 1 and 2, respectively. The fractional dilatancy ω, 

which takes into consideration the association rules [45], was set equal to 0.65 for all 

beams.    

 



www.manaraa.com

135 
 

Steel reinforcing bars were modeled using material model type 

MAT_PLASTIC_KINEMATIC [42]. This material is suited to model isotropic and 

kinematic hardening plasticity. The parameters needed are the modulus of elasticity E, 

poisson's ratio PR, yield stress SIGY, and tangent modulus ETAN.  The modulus of 

elasticity and yield strength are listed in Table 1. PR was set equal to 0.3, and ETAN was 

taken as 10% of the E value. The material behavior is shown in Figure 8b in which l0 and 

l are the undeformed and deformed lengths of a uniaxial tension specimen respectively. 

To model the PBO FRCM composite fibers, only the fibers in the primary fiber 

direction were considered. Material MAT_ORTHOTROPIC_ELASTIC type 2 [42] was 

used for both PBO and carbon fibers. This material is valid for modeling the elastic-

orthotropic behavior of solids, shells, and thick shells. The main parameters needed in 

this model are E, PR, and shear modulus G in three orthogonal directions, and fiber 

direction is defined by a vector. The properties of fibers are listed in Table 3, and the 

material behavior is shown in Figure 8c. Due to numerical instability with the small shell 

thickness, a slightly larger fiber thickness 𝑡𝑡𝑓𝑓∗ was used. To avoid altering the structural 

behavior of the beams, the stiffnesses of the fibers were kept the same by introducing 

reduced modulus E* and G*, where E* and G* in Table 3 can be calculated using Equation 

1: 

                                                 (𝐸𝐸 𝑐𝑐𝑜𝑜 𝐺𝐺)∗ =
(𝐸𝐸 𝑐𝑐𝑝𝑝 𝐺𝐺) × 𝑠𝑠𝑓𝑓

𝑠𝑠𝑓𝑓
∗                                               (1) 

Material MAT_ELASTIC type 1 [42] was used to model the steel plates at the 

restrained end of the beam and the loading arm in order to prevent a stress concentration 

problem.  The parameters needed in this model are E and PR. In order to ensure that the 
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steel plates and arm would remain elastic, a large value of E was used.  PR was set equal 

to 0.3. 

 

3.3 LOADING STRATEGY AND BOUNDARY CONDITIONS  

The load was applied at the same location as in the experiments (Section 2.3) 

using explicit time integration algorithms. This type of solution method is faster and 

requires lower storage space than the implicit method. The explicit analysis is an iterative 

process that solves the incremental procedure by updating the stiffness matrix at the end 

of each increment of load based on changes in geometry and material.  Accordingly, 

convergence problems do not occur at the peak load for nonlinear material models.  

 Steel plates with 1 in. (25 mm) thickness were added at the support locations in 

order to avoid stress concentration problems. The nodes at the restrained end of the beam 

were prevented from translation and rotation in all directions, except the beam 

displacement in the axial direction was allowed for elongation to simulate the boundary 

conditions used in the experimental work. At the other end (loading end), the beam was 

free to rotate around the x-axis as in Figure 6, with no other actions.     

   

4. RESULTS  

4.1 TORQUE-TWIST PER UNIT LENGTH RESPONSE  

The experimental and FE load responses of each beam are shown in Figure 9. 

Values of the torque and angle of twist per unit length in the simulation were determined 

in the same way as in the experimental program. The post-peak region of the 

experimental and FE responses are plotted until the torque reduced by 20% with respect 
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to the peak value. Figure 9 shows that the initial torsional stiffness of all beams was well 

predicted by the FE model, and then the beam suffered an increase in the twist angle 

without increasing of torque due to redistribution of forces from the concrete to the steel 

reinforcement. After this stage, the behavior became non-linear up to the peak torque Tu 

(i.e., the torsional strength). Although the FE load responses deviate from the 

experimental load responses after cracking of concrete, they are in reasonable agreement 

in terms of determining the peak torque. Similar limitations have also been reported with 

FE models of FRP-strengthened beams under torsional loading [5,8,11], 

Values of Tu and the corresponding angle of twist per unit length ψu for each 

beam are summarized in Table 4. Results in Table 4 show that the model was able to 

predict the peak torque with an error in the range of 1-18%. Regarding values of ψu, most 

beams had an acceptable error ranging from 8-20% with the exception of beam N-P-4-C-

2, for which the error was 32%. It is possible that differential slippage of the two fiber 

layers delayed the fiber rupture in the experiment, and this slippage was not considered in 

the FE model.  Figure 9 shows that the model was also able to predict the ultimate torque 

and corresponding angle of twist per unit length, considered herein as the terminal values 

of the load responses as discussed previously, reasonably well. 

 

4.2 MODE OF FAILURE 

The mode of failure predicted by the FE model was examined for each beam and 

compared with the experimental results to ensure the model accuracy. Figure 10 

compares the damage to each beam at failure observed in the experiments and the FE 

results. For the FE results, the failure is depicted by the distribution of the effective 
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plastic strain (damage) in the concrete and the 1st principle strain (tensile strain) in the 

fibers at the peak torque. The color of the fringe for the effective plastic strain is an 

indicator of the level of damage which is scaled between 0 and 2 based on the three 

failure surfaces. The values from 0 to 1 indicate the material transitions from the yield 

failure surface to the maximum failure surface, and values from 1 to 2 indicate the 

material transitions from the maximum failure surface to the residual failure surface [42]. 

In the experimental program, the control beam exhibited typical RC torsional 

behavior with the formation of continuous spiral diagonal cracks around the cross 

section, followed by yielding of the stirrup near the restrained end and crushing of the 

concrete strut. The same mode of failure was observed with the modeled control beam 

(Figure 10a), which failed due to yielding of the transverse reinforcement near the 

loading arm followed by concrete crushing.  

Regarding the strengthened beams, in the experiments, the beams that were 

strengthened with PBO-FRCM composite failed due to fiber rupture at the beam corners 

followed by concrete crushing except for beam N-P-4-(0/90)C-2, which failed due to 

premature debonding of the inner layer of composite (at the restrained end zone). The 

location of the failure with respect to the beam length was near the loading zone for beam 

N-P-4-8S-1, in the middle of the test region for beam N-P-4-S-1, and along the entire test 

region for beam N-P-4-C-2. The mode of failure predicted by the FE model for all 

strengthened beams was fiber rupture at the beam corners preceded by concrete and 

matrix cracking and followed by concrete crushing (Figures 10b, c, d and f), which was 

consistent with the experimental results except for beam N-P-4-(0/90)C-2 (Figure 10e). 

The location of the failure for all modeled beams was at the loading zone (the area with 
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the higher stresses due to the applied load). Furthermore, Figures 10b-f show that the 

effective plastic strain in the concrete for the strengthened beams was distributed along 

the entire test region, while in the case of the control beam, the effective plastic strain in 

the concrete was nonuniform along the test region (Figure 10a). These results indicate 

that the strengthening system provides a better utilization of the concrete strength due to 

confinement. This observation was also reported in the experimental program [31]. 

 

4.3 STRAINS IN INTERNAL REINFORCEMENT AND COMPOSITE FIBERS 

The maximum values of strain at the peak torque in the transverse reinforcing 

bars εt and FRCM composite fibers εf determined by the experiments and FE results are 

summarized in Table 5. Reasonable agreement was achieved between the experimental 

and FE results.  

The experimental and FE torque versus strain responses at the midlength of beams 

N-P-4-S-1, N-P-4-C-1, and N-P-4-C-2 are shown in Figure 11. (For the sake of brevity, 

three strengthened beams were selected for illustration herein and are representative of all 

strengthened beams in this study.) Values of strain plotted from the experiments 

correspond to the strain gage at the midlength of the beam that measured the maximum 

strain at the peak torque in order to compare FE and experimental values at the same 

location. The FE model was able to predict the same behavior as in the experimental 

results, that is, a linear response up to the cracking torque followed by a nonlinear trend 

up to the peak torque. 

Internal reinforcement strains at the peak torque predicted by the FE model at 

different locations of each beam were investigated to gain a better understanding of the 
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yielding zone. Generally, the model showed that the stirrups yielded within the vicinity of 

the loading end, while the longitudinal reinforcement yielded near the restrained end. 

These locations are consistent with the experimental results except for beam N-P-4-

(0/90)C-2. In the experimentally tested beam, the yielded stirrups were located at the 

midlength and at the restrained end due to debonding of the internal layer of composite at 

the restrained end, which prevented the stresses from distributing to the loading end.   

 

5. PARAMETRIC STUDY 

The verified FE model was used to study the influence of different parameters on 

the torsional strength and behavior of RC beams strengthened with PBO-FRCM 

composite to archive more data and to provide more information about the most effective 

parameters to be considered in design. Parameters investigated in the parametric study 

were the compressive strength of concrete f’c, and the FRCM composite strip width w and 

clear spacing s. In each case, the FE model corresponding to one of the experimentally 

tested beams was selected for the baseline comparison, and then the parameter of interest 

was varied to study its influence on the response. The FE model for beam N-P-R-4-C-1 

was selected for studying the parameter f’c, and the FE model for the control beam was 

selected for studying the parameters w and s.  The results are discussed in the sections 

that follow. 

 

5.1 CONCRETE COMPRESSIVE STRENGTH 

The concrete compressive strength f’c was varied from 3000 psi to 8000 psi (20.7 

MPa 55.2 MPa) for beam N-P-4-C-1 to study its influence on the torsional strength and 
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behavior of PBO-FRCM strengthened beams. The value of f’c  in the baseline model was 

5700 psi (39.3 MPa) (Batch 1, Table 1). As shown in Figure 12a, the torsional behavior 

was similar for all models, with lower initial stiffness for strengthened beams with lower 

concrete compressive strength. Beams with f’c  less than that of the baseline model had 

lower values of peak torque relative to the baseline model (Table 6). Strengthened beams 

with lower concrete compressive strength failed due to crushing of the concrete strut. At 

failure, the strains in the fibers were very low and more distributed along the entire beam 

length (Figure 12b) compared with those in the baseline beam (N-P-4-C-1) (Figure 12c), 

which had a higher concentration of strain at the beam corner (fiber rupture). On the other 

hand, no increase in peak torque was achieved for values of f’c  higher than the value of 

the baseline model (in other words, f’c =5700 psi is the saturation point for this particular 

case).  Fiber rupture governed the mode of failure for strengthened beams with higher 

concrete compressive strength.  

 

5.2 FRCM COMPOSITE STRIP WIDTH AND SPACING 

Different composite wrapping schemes were modeled to investigate the influence 

of strip width w and clear spacing s. Values of w and s ranged from 0 in. to 8 in. (0 mm to 

203.2 mm), where the maximum value of s considered corresponded to the beam width in 

this study. Strips with only a single layer of composite were considered in this parametric 

study, since experimental results showed that the increase in torsional strength is not 

directly proportional to the number of composite layers [31]. Further work is needed to 

study the torsional behavior of beams strengthened with multiple layers of FRCM 

composite. 
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The results are compared with the control (unstrengthened) beam in Figure 13a 

and Table 6. The FE results of beam N-P-4-C-1, which was strengthened continuously 

along the length, and beam N-P-4-S-1, with w=4 in. (101.6 mm) and s=4 in. (101.6 mm), 

are also included for comparison. Both beams N-P-4-C-1 and N-P-4-S-1 were 

constructed with the same batch of concrete as the control beam (Batch 1, Table 1). The 

control beam failed due to crushing of the concrete strut, whereas all strengthened beams 

failed due to fiber rupture.  

The volumetric ratio of the fibers ρf, computed using Eq. (2) for each different 

wrapping scheme considered, is included in Table 6: 

                                                  𝜌𝜌𝑓𝑓 = 𝑛𝑛𝑓𝑓.𝑠𝑠𝑓𝑓.𝑝𝑝𝑓𝑓.𝑤𝑤
𝐴𝐴𝑐𝑐.𝑠𝑠𝑓𝑓

                                                            (2) 

where pf is the wrapped perimeter of the beam, nf  is the number of layers of the 

composite, w is the width of the composite sheets, sf is the center-to-center spacing of the 

applied composite sheets (sf=w+s), and Ac was defined previously. Values of percent 

increase in Tu relative to the control beam versus ρf are plotted in Figure 13b. Results in 

Figure 13b and Table 6 show that Tu increases with increasing ρf, however the increase in 

Tu is not directly proportional to the increase in ρf. Beams with the same value of ρf but 

different values of w and s exhibited similar increases in Tu relative to the control beam.  

 

6. CONCLUSIONS 

This paper discussed the numerical simulation of PBO-FRCM composite-

strengthened RC beams with different reinforcement schemes under torsional loading 

using the software program package LS-DYNA 971 R3. Torsional strength, torque-twist 
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per unit length response, and strains in the internal and external reinforcement were 

evaluated and compared with experimental results to validate the model and determine 

the accuracy. A parametric study was conducted to investigate the effects of concrete 

compressive strength and FRCM composite strip width and spacing. The important points 

concluded from this study are listed below: 

1. The general torsional behavior of the experimentally tested beams was predicted 

accurately by the finite element model in terms of initial stiffness and peak torque. 

2. The peak torque and twist per unit length were predicted by the model with maximum 

error of 18% and 32%, respectively. Values of strains in the internal reinforcement 

and the composite fibers determined by the experiments and FE results at the peak 

torque were compared at the beam midlength. Reasonable agreement was achieved 

between the experimental and FE results. 

3. Results of the parametric study showed that values of concrete compressive strength 

higher than that of the baseline beam (f’c=5,700 psi) (39.3 MPa) did not increase the 

torsional strength. On the other hand, a reduction in torsional strength was observed 

for values of concrete compressive strength lower than that of the baseline beam. The 

difference is due to different failure modes, namely fiber rupture for beams with 

higher values of f’c and crushing of the concrete strut for lower values of f’c. 

4. The parametric study also showed that the torsional strength increases with increasing 

fiber reinforcement ratio, although the increase in torsional strength is not directly 

proportional to the increase in fiber reinforcement ratio. Beams with the same fiber 

reinforcement ratio but different strip width and spacing exhibited similar increases in 

torsional strength relative to the control beam. 
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Table 1. Measured concrete and steel reinforcement properties.                                      

Material Concrete Steel Reinforcement 
Batch 1 Batch 2 No. 3  No. 5 

Compressive Strength, psi 
(MPa) 

5700 
(39.3) 

5000 
(34.5) -- -- 

Splitting Tensile Strength, psi 
(MPa) 460 (3.2) 400 (2.8) -- -- 

Modulus of Elasticity ksi (GPa) 4150 
(28.6) 

4150 
(28.6) 

29000 
(200) 

28000 
(193) 

Yield Strength, ksi (MPa) --  65.8 (454) 68.0 (469) 
Ultimate Strength, ksi (MPa) --  104 (717) 107 (738) 
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Table 2. Measured PBO-FRCM composite material properties. 
PBO Fibers 

Nominal Thickness in Primary Fiber Direction, 
in. (mm) 

0.0018 (0.046) 

Ultimate Tensile Strength, ksi (MPa) 440 (3015) 
Modulus of Elasticity, ksi (GPa) 29,900 (206) 
Ultimate Strain, in./in. (mm/mm) 0.0145 (0.0145) 

Mortar 
 Batch 1 Batch 2 

Compressive Strength, psi (MPa) 3600 (24.8) 2200 (15.2) 
Splitting Tensile Strength, psi (MPa) 670 (4.6) 520 (3.6) 

 

 

 

Table 3. PBO and carbon fiber properties in LS-DYNA. 
Fiber 
type 

E*a ksi 
(GPa) 

E*b ksi 
(GPa) 

E*c ksi 
(GPa) PRba PRca  PRcb 

G*ab 
ksi 

(GPa) 

G*bc 
ksi 

(GPa) 

G*ca ksi 
(GPa) 

Carbon 5750 
(39.6) 

575 
(4.0) 

575 
(4.0) 0.01 0.01 0.25 514 

(3.5) 
230 
(1.6) 

230 
(1.6) 

PBO 1350 
(9.3) 

135 
(0.9) 

135 
(0.9) 0.01 0.01 0.25 120 

(0.8) 
54 

(0.4) 
54 

(0.4) 
 
 
 
 
 
 

Table 4. Experimental and FE peak torque Tu and corresponding twist per unit length ψu. 
Experimental 

Campaign 
Phase 

Beam ID Concrete 
Batch 

Matrix 
Batch 

Tu k-in. (kN-m) ψu deg/in. (deg/m) 

Exp. FE FE/Exp. Exp. FE FE/Exp. 

1 [31] Control A A 148.7 
(16.8) 

151.1 
(17.1) 1.02 0.085 

(3.346) 
0.078 

(3.071) 0.92 

1 [31] N-P-4-S-1 A A 193.2 
(21.8) 

213.7 
(24.1) 1.11 0.245 

(9.646) 
0.202 

(7.953) 0.83 

2 N-P-4-8S-1 B B 179.1 
(20.2) 

211.6 
(23.9) 1.18 0.227 

(8.937) 
0.207 

(8.150) 0.90 

1 [31] N-P-4-C-1 A A 240.4 
(27.2) 

239.0 
(27.0) 0.99 0.230 

(9.055) 
0.203 

(7.992) 0.88 

2 N-P-4-(0/90)C-2 B B 249.3 
(28.2) 

261.9 
(29.6) 1.05 0.223 

(8.780) 
0.178 

(7.008) 0.80 

1 [31] N-P-4-C-2 A A 310.6 
(35.1) 

293.0 
(33.1) 0.94 0.241 

(9.488) 
0.163 

(6.417) 0.68 
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Table 5. Maximum strains in the internal transverse reinforcing bars and composite. 
fibers at peak torque Tu. 

Phase Beam 

Internal Transverse 
Reinforcement Strain Composite Fiber Strain 

εt (%) 
(Exp.) 

εt (%) 
(FE) FE/Exp. εf (%) 

(Exp.) 
εf (%) 
(FE) FE/Exp. 

1 [31] Control 0.252 0.231 0.92 - - - 
1 [31] N-P-4-S-1 0.295 0.240 0.81 1.026 1.147 1.12 

2 N-P-4-8S-1 0.386 0.240 0.62 0.505 1.127 2.23 
1 [31] N-P-4-C-1 0.275 0.236 0.86 0.822 1.257 1.53 

2 N-P-4-
(0/90)C-2 0.345 0.228 0.66 0.848 1.010 1.19 

1 [31] N-P-4-C-2 0.305 0.213 0.70 0.653 0.970 1.49 
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Table 6. Effect of parameters on peak torque Tu.  
Parameters and Values % Change in Tu (Relative to 

Baseline) 

Concrete Compressive 
Strength, f′c psi (MPa) 

3000 (20.7) -16 
4000 (27.6) -9 
5000 (34.5) -3 
5700 (39.3)* - 
7000 (48.3) 0 
8000 (55.2) 2 

 
 
 
 

 
 

Strip Width w and Spacing 
s, in. (mm), Composite 

Fiber Reinforcement Ratio 
ρf  % 

Control* - 
w=2 (50.8) 
s=4 (101.6) 
ρf =0.025 

32 

w=2 (50.8) 
s=2 (50.8) 
ρf=0.038 

36 

N-P-4-S-1 
w=4 (101.6) 
s=4 (101.6) 
ρf =0.038 

41 

w=8 (203.2) 
s=8 (203.2) 
ρf =0.038 

44 

w=4 (101.6) 
s=2 (50.8) 
ρf =0.050 

48 

w=8 (203.2) 
s=4 (101.6) 
ρf =0.050 

48 

N-P-4-C-1 
w=60 (1524.0) 

s=0 (0)  
 ρf =0.075 

58 

*Indicates baseline for comparison 
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Figure 1. Beam layout and reinforcing details. 

 

 

 

Figure 2. PBO unbalanced fiber net. 
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Figure 3. Schematic configuration of unstrengthened and strengthened beams: a) control 
beam, b) one layer, 90° strips (N-P-4-S-1), c) one layer, 90° strips (N-P-4-8S-1), d) one 
layer, 90° continuous (N-P-4-C-1), e) two layers, (0/90)° continuous (N-P-4-(0/90)C-2), 

f) two layers, 90° continuous (N-P-4-C-2). 
 

 

Figure 4. Torsion test setup. 
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Figure 5. Instrumentation: a) RVDT and LVDTs, b) strain gages on the steel 
reinforcement, c) strain gages on the PBO-FRCM composite. 

 

 

 



www.manaraa.com

151 
 

 

Figure 6. Modeled beam in LS-DYNA. 

 

 

 

Figure 7. Modeled components: a) concrete beam, b) internal steel reinforcement, c) steel 
plates and loading arm, d) carbon fiber, e) cementitious matrix, f) PBO fiber. 
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Figure 8. a) Three failure surfaces of concrete and matrix (adapted from [43]), b) elastic-
plastic behavior with kinematic hardening for steel reinforcing bars (adapted from [42]), 

c) stress-strain relationship for PBO and carbon fibers. 
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Figure 9. Experimental versus FE torque-twist per unit length response: a) control beam, 
b) N-P-4-S-1, c) N-P-4-8S-1, d) N-P-4-C-1, e) N-P-4-(0/90)C-2, f) N-P-4-C-2. 
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Figure 10. Comparison of failure mode (experimental and FE) for validated beams: a) 
control beam, b) N-P-4-S-1, c) N-P-4-8S-1, d) N-P-4-C-1, e) N-P-4-(0/90)C-2,  

f) N-P-4-C-2. 
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Figure 11. Torque versus strain at midlength a) N-P-4-S-1, b) N-P-4-C-1, and  
c) N-P-4-C-2. 
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Figure 12. a) Influence of concrete compressive strength f’c on torsional behavior, b) 
strain distribution in the fibers at the peak torque Tu for beam with f’c =3000 psi (20.7 

MPa), c) strain distribution in the fibers at the peak torque Tu for baseline beam  
(N-P-4-C-1) with f’c =5700 psi (39.3 MPa). 
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Figure 13. a) Influence of composite strip width w and spacing s on the torsional 
response, b) effect of volumetric fiber ratio ρf on the increase in peak torque Tu relative to 

the control beam. 
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V. ANALYTICAL STUDY ON THE TORSIONAL BEHAVIOR OF 
REINFORCED CONCRETE BEAMS STRENGTHENED WITH FRCM 

COMPOSITE 
 

Meyyada Y. Alabdulhady, Khalid Aljabery, and Lesley H. Sneed 

 
ABSTRACT 

In this study, an analytical approach was used to predict the full torsional response 

of RC beams strengthened with externally bonded fiber reinforced cementitious matrix 

(FRCM) composite. The analytical model was based on the softened membrane model 

for torsion (SMMT) modified for fiber reinforced polymer (FRP)-strengthened beams. As 

a first attempt, fully wrapped beams with fiber rupture governing the mode of failure 

were considered in this study. The model was validated by comparing the analytical 

response to the experimental response of five solid, rectangular RC beams. The model 

was able to predict values of the cracking and ultimate torsional moment and 

corresponding angles of twist per unit length with reasonable accuracy. Also, good 

agreement was achieved between the experimental and analytical results of the strain in 

the stirrups and composite fibers. The results confirm the feasibility of the SMMT model 

to predict the torsional response of FRCM-strengthened beams. However, additional 

modifications are required to extend the model to U-wrapped configurations and 

composite debonding failure modes. 

 

KEYWORDS 

Fiber strain; PBO-FRCM composite; RC beams; softened membrane model; 

strengthening; torsion. 
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1. INTRODUCTION 

Externally bonded fiber reinforced composites have been widely used for 

strengthening and repairing reinforced concrete (RC) elements in buildings and bridges. 

Fiber reinforced polymer (FRP) composite material is the most common system used for 

this purpose. However, in some situations it is difficult to use FRP composite material as 

an external strengthening system due to its inability to install onto wet surfaces or in low 

temperatures. Furthermore, the epoxy resin, which is used as the binder between the 

fibers and the substrate, has poor properties such as low fire resistance and lack of vapor 

permeability. Therefore, a new type of composite system, referred to as fiber reinforced 

cementitious matrix (FRCM) composite, has been investigated recently as an alternative 

strengthening technique to overcome the shortcomings of the well-known FRP composite 

system. The inorganic cementitious matrix in the FRCM composite system affords better 

compatibility with concrete and masonry substrates and has better heat resistance than the 

epoxy resin in the FRP composite system. Different types of fibers have been used in 

FRCM composite systems such as polyparaphenylene benzobisoxazole (PBO), carbon, 

glass, aramid, basalt, and steel. The use of PBO-FRCM composite, which is the 

composite used in the present study, has been studied for flexural strengthening [e.g., 

D’Ambrisi and Focacci 2011, Ombres 2011, Babaeidarabad et al. 2014, Sneed et al. 

2016], shear strengthening [e.g., Ombres 2012, Ombres 2015, Trapko et al. 2015, Loreto 

et al. 2015, Aljazaeri and Myers 2017, Gonzalez-Libreros et al. 2017, Gonzalez-Libreros 

et al. 2017], and confinement of axially/eccentrically loaded RC elements [e.g., Colajanni 

et al. 2014, Carloni et al. 2014, Sneed et al. 2017], but currently there are very few 

studies in the technical literature on its use for torsional strengthening [Alabdulhady et al. 
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2017, Alabdulhady and Sneed 2018]. Since the early of 2000s, researchers have 

investigated experimentally the torsional behavior of RC beams strengthened with 

externally bonded FRP composites [Ghobarah et al. 2002, Panchacharam and Belarbi 

2002, Salom et al. 2004, Hii and Al-Mahaidi 2006, Hii and Al-Mahaidi 2006, Ameli et al. 

2007, Chalioris 2008, Deifalla et al. 2013]. Furthermore, analytical studies have been 

conducted to predict the torsional behavior of RC beams strengthened with FRP 

composite material by implementing different approaches. Ameli and Ronagh [2007] 

developed a method based on the compression field theory (CFT) to determine the 

torsional strength of FRP-strengthened RC beams. Deifalla and Ghobarah [2010] 

developed an analytical model based on the modified compression field theory (MCFT), 

the hollow tube analogy, and compatibility at the corner of the cross section to predict the 

full torsional behavior of RC beams strengthened with FRP composite. Their model 

considered the tensile stress in concrete and took into account different composite 

wrapping schemes, including U-wrapped and side-bonded configurations, fiber 

orientations, and failure modes.  

Chalioris [2007] introduced an approach to predict the full torsional behavior of 

RC beams strengthened with FRP composite material by combining two different 

theoretical models: the smeared crack model for plain concrete in torsion to predict the 

elastic (pre-cracking) response, and a modified softened truss model for torsion (STMT) 

that takes into account the contribution of the FRP composite to predict the post-cracking 

response. The model also considered different composite wrapping schemes, fiber 

orientations, and failure modes but did not include the tensile stress in concrete. Chai et 

al. [2014] proposed an analytical method to predict the torsional capacity and behavior of 
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RC multicell box girders strengthened with CFRP sheets based on the extension and 

modification of the softened truss model for torsion (STMT) algorithm. Extending the 

work by Chalioris [2007] and Chai et al. [2014], Shen et al. [2017] proposed an analytical 

model based on a modification of the STMT to predict the full torsional response of RC 

beams externally wrapped with FRP composite considering the influence of the tensile 

stress in concrete and the effect of FRP confinement.  

Ganganagoudar et al. [2016] introduced a modified softened membrane model for 

torsion (SMMT) taking into account the influence of externally bonded FRP on the 

compressive behavior of cracked concrete and the tensile stress in concrete. The model 

considered the fiber rupture failure mode of FRP; debonding of the composite was 

outside the scope of the study. Analytical results were compared with those determined 

from experiments and a nonlinear finite element analysis, which were in reasonable 

agreement with the analytical results.  Zojaji and Kabir [2012] developed a procedure to 

predict the full torsional response of RC beams strengthened with externally bonded FRP 

composite based on the SMMT model and considering the tensile stress in concrete. 

Different failure modes were considered, including composite fiber rupture and 

debonding, and the analytical results were in good agreement with experimental results.  

The aim of the present study is to predict the full torsional response of RC beams 

strengthened with externally bonded PBO-FRCM composite. The analytical model is 

based on the SMMT due to its ability to predict the entire torque-twist response (pre-

cracking, post-cracking, and post-peak stages) of FRP-strengthened RC beams with 

reasonable accuracy. As a first attempt, fully wrapped beams with fiber rupture governing 

the mode of failure are considered in this study. The results from an experimental 
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program conducted by the authors [Alabdulhady et al. 2017, Alabdulhady and Sneed 

2018] are used to validate the analytical model. Furthermore, the strains measured in the 

internal and external reinforcement and the behavior of concrete and steel reinforcement 

are evaluated. 

 

2. ANALYTICAL MODEL 

2.1 OVERVIEW 

The softened membrane model for torsion (SMMT) was first introduced by Jeng 

and Hsu [2009] for RC beams subjected to pure torsion. Zojaji and Kabir [2012] 

modified the Jeng and Hsu [2009] model to include the effect of externally bonded FRP 

composite on the torsional behavior of strengthened RC beams. The model was validated 

with solid and hollow rectangular beams with different FRP materials and strengthening 

configurations. The modified SMMT model by Zojaji and Kabir [2012] was adopted in 

the current study in an attempt to model the response of solid, rectangular RC beams 

strengthened with externally bonded FRCM composite described in Section 3.  

In the SMMT model of an externally strengthened RC beam, torsional moment 

after concrete cracking is resisted by truss action of compressive stresses in the diagonal 

concrete struts and tensile stresses in the internal and external reinforcement. Equations 

of equilibrium and compatibility are solved with the constitutive relationships of an 

element taken from a member under pure torsional moment (see Figure 1). The 

strengthening system is considered in the model by the addition of terms to the 

equilibrium equations in the longitudinal and transverse directions, as applicable. The 

effect of confinement provided by the strengthening system is considered in the 
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constitutive relationship of concrete in compression. Variables in this section are defined 

in the Nomenclature section. 

 

2.2 EQUILIBRIUM EQUATIONS  

The torsional moment T applied to a rectangular RC prism that is strengthened 

with externally bonded fiber reinforced composite (Figure 1) is resisted by the internal 

uniform shear stresses (τ) formed by the circulatory shear flow q developed in the center 

of the shear flow zone that has an effective thickness td [Hsu 1990]. A membrane element 

subjected to in-plane stresses and the corresponding internal stress components of the 

concrete, internal reinforcement, and external reinforcement are shown in Figure 1. The 

state of the in-plane stresses of element A (Figure 1) can be represented by Mohr’s circle 

[Hsu 1993] as shown in Figure 2, where the l-t coordinate is defined as the direction of 

the longitudinal and transverse reinforcing steel bars, and the 2-1 coordinate is defined as 

the direction of the principle applied stresses. The in-plane equilibrium equations for 

element A are then given by Equation 1: 

          б𝑠𝑠 = б2𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠2𝛼𝛼2 + б1𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠2𝛼𝛼2 + 2𝜏𝜏21𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼2𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼2 + 𝜌𝜌𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 + 𝜌𝜌𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓𝑠𝑠                      (1a) 

          б𝑠𝑠 = б2𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠2𝛼𝛼2 + б1𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠2𝛼𝛼2 − 2𝜏𝜏21𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼2𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼2 + 𝜌𝜌𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 + 𝜌𝜌𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓𝑠𝑠                     (1b) 

                  𝜏𝜏𝑠𝑠𝑠𝑠 = (−б2𝑐𝑐 + б1𝑐𝑐) − 2𝜏𝜏21𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼2𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼2 + 𝜌𝜌𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 + 𝜌𝜌𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓𝑠𝑠                              (1c) 

For an RC beam subjected to pure torsion, element A is subjected to pure shear 

𝜏𝜏𝑠𝑠𝑠𝑠 = 𝑞𝑞/𝑡𝑡𝑝𝑝, with the normal stresses бl =бt =0 and α2 = 45°. The torsional moment T can 

be calculated from Equation 2, which is adopted from Bredt’s equation for an equivalent 

thin walled cross section [Bredt 1896]: 

                                         𝑇𝑇 = 2𝐴𝐴0𝑞𝑞 = 2𝐴𝐴0𝑡𝑡𝑝𝑝𝜏𝜏𝑠𝑠𝑠𝑠                                                  (2) 
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2.3 COMPATIBILITY EQUATIONS 

The in-plane compatibility of the shear in element A (Figure 1) must be ensured. 

Equation 3 [Hsu and Zhu 2002] presents the compatibility equations, which are 

represented by Mohr’s circle in Figure 3: 

                    𝜀𝜀𝑠𝑠 = 𝜀𝜀2𝑐𝑐𝑐𝑐𝑠𝑠2𝛼𝛼2 + 𝜀𝜀1𝑠𝑠𝑠𝑠𝑠𝑠2𝛼𝛼2 + 𝛾𝛾21𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼2𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼2                                            (3a) 

                    𝜀𝜀𝑠𝑠 = 𝜀𝜀2𝑠𝑠𝑠𝑠𝑠𝑠2𝛼𝛼2 + 𝜀𝜀1𝑐𝑐𝑐𝑐𝑠𝑠2𝛼𝛼2 − 𝛾𝛾21𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼2𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼2                                           (3b) 

               𝛾𝛾𝑠𝑠𝑠𝑠 = 2(−𝜀𝜀2 + 𝜀𝜀1)𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼2𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼2 + 𝛾𝛾21(𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼2 − 𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼2)                                  (3c) 

Since the constitutive relationships of the materials are calculated from the 

uniaxial strain, the uniaxial strain is related to the biaxial strain using the relationships 

given by Zhu and Hsu below [Zhu and Hsu 2002]. 

Concrete uniaxial strain: 

                                         𝜀𝜀1͞ = 1
1−𝜈𝜈12𝜈𝜈21

𝜀𝜀1 + 𝜈𝜈12
1−𝜈𝜈12𝜈𝜈21

𝜀𝜀2                                                 (4a) 

                                         𝜀𝜀2͞ = 𝜈𝜈12
1−𝜈𝜈12𝜈𝜈21

𝜀𝜀1 + 1
1−𝜈𝜈12𝜈𝜈21

𝜀𝜀2                                                (4b) 

                                                         𝛾𝛾21͞ = 𝛾𝛾21                                                               (4c) 

Steel reinforcing bar uniaxial strain: 

                              𝜀𝜀͞𝑠𝑠 = 𝜀𝜀2͞𝑐𝑐𝑐𝑐𝑠𝑠2𝛼𝛼2 + 𝜀𝜀1͞𝑠𝑠𝑠𝑠𝑠𝑠2𝛼𝛼2 + 𝛾𝛾21𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼2𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼2                                 (5a) 

                              𝜀𝜀͞𝑠𝑠 = 𝜀𝜀2͞𝑠𝑠𝑠𝑠𝑠𝑠2𝛼𝛼2 + 𝜀𝜀1͞𝑐𝑐𝑐𝑐𝑠𝑠2𝛼𝛼2 − 𝛾𝛾21𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼2𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼2                                 (5b) 

The other two compatibility equations that relate the shear strain to the angle of 

twist per unit length 𝜓𝜓 and curvature ϕ are given by Equations 6 and 7, respectively [Hsu 

1993]: 

                                                       𝜓𝜓 = 𝑝𝑝0
2𝐴𝐴0

𝛾𝛾𝑠𝑠𝑠𝑠                                                                  (6) 

                                           𝜙𝜙 = 𝜓𝜓𝑠𝑠𝑠𝑠𝑠𝑠2𝛼𝛼2 = 𝑝𝑝0
2𝐴𝐴0

𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝛼𝛼2                                              (7) 
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The curvature ϕ results in a strain gradient in the concrete struts as shown in 

Figure 4. The triangular strain distribution in the 1- and 2- directions is assumed to be 

linear based on the rotating angle theories, and the depth of the compression zone of the 

concrete struts is assumed to be the effective thickness of the shear flow zone td. 

Therefore, td can be calculated by Equation 8 [Jeng and Hsu 2009]: 

                                                                𝑡𝑡𝑝𝑝 = 𝜀𝜀͞2𝑠𝑠
𝜙𝜙

                                                              (8) 

Substitution and manipulation of Equations 7 and 8 with the equations for computing p0 

and A0 in the Nomenclature section yields to Equation 9 for calculating the effective 

thickness of shear flow zone td [Jeng and Hsu 2009]:    

              𝑡𝑡𝑝𝑝 = 1
2(𝑄𝑄+4)

�𝑝𝑝𝑐𝑐 �1 + 𝑄𝑄
2
� − ��1 + 𝑄𝑄

2
�
2
𝑝𝑝𝑐𝑐2 − 4𝑄𝑄(𝑄𝑄 + 4)𝐴𝐴𝑐𝑐)�                            (9) 

where: 

                                              𝑄𝑄 = 2𝜀𝜀͞2𝑠𝑠
𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛2𝛼𝛼2

= 4𝜀𝜀͞𝑠𝑠
𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛2𝛼𝛼2

                                                    (10) 

 

2.4 CONSTITUTIVE RELATIONSHIPS OF MATERIALS 

The constitutive relationships of the concrete, steel reinforcing bars, and 

composite fibers are discussed in detail in this section and are illustrated in Figure 5. 

Parameters in the equations that follow are given in units of (mm, MPa) except for Ef, 

which is given in (GPa) according to FIB [fib 2001]. 

2.4.1 Concrete in Compression. The stress-strain response of the SMMT model 

was developed by Belarbi and Hsu [1995] for a softened compressive concrete and then 

modified by Chalioris [2007] to include the effect of confinement provided by external 
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reinforcement using the method proposed by Vintzileou and Panagiotidou [2008]. The 

stress-strain relationship of concrete in compression is given by Equation 11, and the 

behavior is illustrated in Figure 5a: 

                                                       𝜎𝜎2𝑐𝑐 = 𝑘𝑘1𝑐𝑐ζ 𝑓𝑓𝑐𝑐′                                                            (11) 

𝑘𝑘1𝑐𝑐 = 𝜀𝜀͞2𝑠𝑠
𝑘𝑘2ζ𝜀𝜀0 

− (𝜀𝜀͞2𝑠𝑠)2

3(𝑘𝑘2ζ𝜀𝜀0)2 
                           for  𝜀𝜀͞2𝑠𝑠

𝑘𝑘2ζ𝜀𝜀0 
≤ 1 

                               𝑘𝑘1𝑐𝑐 = 1 − 𝑘𝑘2ζ𝜀𝜀0
3𝜀𝜀2͞𝑠𝑠 

                                     for  𝜀𝜀͞2𝑠𝑠
𝑘𝑘2ζ𝜀𝜀0 

> 1                     (12) 

                                                   ζ = 0.9
�(1+400𝜀𝜀͞1)

                                                               (13) 

where: 

                                                 𝑘𝑘 = 1 + 1.3𝛼𝛼𝑛𝑛𝜔𝜔𝑛𝑛                                                           (14) 

                                                   𝛼𝛼𝑛𝑛 = 1 − 𝑏𝑏2+ℎ2

3𝐴𝐴𝑐𝑐
                                                             (15) 

                       𝜔𝜔𝑛𝑛 = 𝑉𝑉𝑐𝑐𝑠𝑠𝑓𝑓𝑉𝑉𝑓𝑓 𝑐𝑐𝑓𝑓 𝑐𝑐𝑐𝑐𝑉𝑉𝑝𝑝𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓 𝑉𝑉𝑚𝑚𝑠𝑠𝑓𝑓𝑝𝑝𝑠𝑠𝑚𝑚𝑠𝑠
𝑉𝑉𝑐𝑐𝑠𝑠𝑓𝑓𝑉𝑉𝑓𝑓 𝑐𝑐𝑓𝑓 𝑠𝑠ℎ𝑓𝑓 𝑐𝑐𝑐𝑐𝑛𝑛𝑓𝑓𝑠𝑠𝑛𝑛𝑓𝑓𝑝𝑝 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑝𝑝𝑓𝑓𝑠𝑠𝑓𝑓 𝑐𝑐𝑐𝑐𝑝𝑝𝑓𝑓

𝑓𝑓𝑓𝑓𝑓𝑓
𝑓𝑓𝑐𝑐′

               (16) 

2.4.2 Concrete in Tension. The model by Belarbi and Hsu [1995] for the tensile 

behavior of concrete in shear was modified by Jeng and Hsu [2009] for concrete in 

torsion to account for an increase in the pre-cracking stiffness and strain at peak tensile 

stress. The concrete behavior in tension is shown in Figure 5b, and the tensile stress is 

calculated as follows: 

                                                     𝜎𝜎1𝑐𝑐 = 𝑘𝑘1𝑠𝑠𝑓𝑓𝑐𝑐𝑝𝑝                                                                 (17) 

𝑘𝑘1𝑠𝑠 = 𝜀𝜀͞1𝑠𝑠
2𝜀𝜀𝑐𝑐𝑐𝑐 

                                                    for  𝜀𝜀͞1𝑠𝑠
𝜀𝜀𝑐𝑐𝑐𝑐 

≤ 1 

                      𝑘𝑘1𝑠𝑠 = 𝜀𝜀𝑐𝑐𝑐𝑐
2𝜀𝜀͞1𝑠𝑠 

+ (𝜀𝜀𝑐𝑐𝑐𝑐)0.4

0.6𝜀𝜀͞1𝑠𝑠
[(𝜀𝜀1͞𝑠𝑠)0.6 − (𝜀𝜀𝑐𝑐𝑝𝑝)0.6]           for  𝜀𝜀͞1𝑠𝑠

𝜀𝜀𝑐𝑐𝑐𝑐 
> 1                     (18) 
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where: 

                                                     𝑓𝑓𝑐𝑐𝑝𝑝 = 𝐸𝐸𝑐𝑐𝜀𝜀𝑐𝑐𝑝𝑝                                   (19) 

                                                   𝐸𝐸𝑐𝑐 = 5620�𝑓𝑓𝑐𝑐′           (20) 

and 𝜀𝜀𝑐𝑐𝑝𝑝 is taken as 0.000116. 

The concrete shear stress is related to the shear strain by Equation 21: 

                                                    𝜏𝜏21𝑐𝑐 = 𝜎𝜎1𝑐𝑐−𝜎𝜎2𝑐𝑐

2(𝜀𝜀1−𝜀𝜀2)
𝛾𝛾21                                                        (21) 

2.4.3 Steel Reinforcing Bars. The stress-strain response for the longitudinal and 

transverse steel reinforcement is shown in Figure 5c, and the relationship is given below 

[Jeng and Hsu 2009]: 

          𝑓𝑓𝑠𝑠 = 𝐸𝐸𝑠𝑠𝜀𝜀͞𝑠𝑠                                           for  𝜀𝜀͞𝑠𝑠 ≤ 𝜀𝜀͞𝑛𝑛 

           𝑓𝑓𝑠𝑠 = 𝑓𝑓𝑠𝑠𝑠𝑠 �(0.91 − 2𝐵𝐵) + (0.02 + 0.25𝐵𝐵) 𝜀𝜀͞𝑠𝑠
𝜀𝜀𝑠𝑠𝑠𝑠 
�            for  𝜀𝜀͞𝑠𝑠 > 𝜀𝜀͞𝑛𝑛                     (22) 

where: 

                                                     𝐵𝐵 = �𝑓𝑓𝑐𝑐𝑝𝑝 𝑓𝑓𝑠𝑠𝑠𝑠⁄ �
1.5

𝜌𝜌�                    (23) 

                                                  𝜀𝜀͞𝑛𝑛 = 𝜀𝜀𝑠𝑠𝑠𝑠(0.93 − 2𝐵𝐵)                                          (24) 

2.4.4 Composite Fibers. The tensile behavior of the composite material is 

assumed to be linear elastic up to failure as shown in Figure 5d. Accordingly, only the 

fibers are considered, and the influence of the matrix is neglected. The constitutive law is 

based on Hook’s law: 

                                             𝑓𝑓𝑓𝑓 = 𝐸𝐸𝑓𝑓𝜀𝜀𝑓𝑓                                     for 𝜀𝜀𝑓𝑓 ≤ 𝜀𝜀𝑓𝑓𝑓𝑓                  (25) 

where 𝜀𝜀𝑓𝑓𝑓𝑓 is the effective tensile strain, which is determined based on the mode of failure 

and wrapping configuration of the RC beam strengthened with external reinforcement. In 
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the modified SMMT model for FRP-strengthened beams by Zojaji and Kabir [2012], 

failure modes that were considered included composite debonding, peeling off, and fiber 

rupture for the case of fully-wrapped beams, and composite debonding for the case of U-

wrapped beams. For PBO FRCM-strengthened beams with fibers fully wrapped around 

the cross-section and oriented perpendicular to the longitudinal axis of the beam, 

previous studies reported that fiber rupture governed the failure mode [Alabdulhady et al. 

2017, Alabdulhady and Sneed 2018]. Therefore in the present study, the fiber rupture 

failure mode is considered, and the equation proposed by Deifalla and Ghobarah [2010] 

and utilized in the SMMT model modified by Zojaji and Kabir [2012] is employed 

herein: 

                                                       𝜀𝜀𝑓𝑓𝑓𝑓 = 0.1(𝐸𝐸𝑓𝑓𝜌𝜌𝑓𝑓)−0.86𝜀𝜀𝑓𝑓𝑓𝑓                                        (26) 

For failure modes associated with composite debonding, on the other hand, it has 

been noted that determining the effective fiber strain is extremely challenging [fib 2001], 

especially since experimental data on strengthened RC beams subjected to torsion is 

limited in the technical literature. Different models have been proposed to compute the 

effective fiber strain for debonding of FRP composites, however, it must be noted that 

such models are generally not applicable to FRCM composites since the bond behavior is 

different. With FRP composites, debonding typically occurs within a thin layer of the 

concrete substrate, and therefore models for the effective fiber strain for FRP composites 

are usually a function of the concrete strength [fib 2001]. For PBO-FRCM composite, on 

the other hand, debonding has been associated with slippage of the fibers relative to the 

embedding matrix [Sneed et al. 2014], and the concrete strength does not significantly 

influence the bond behavior [D’Antino et al. 2015]. Recent work has examined the 



www.manaraa.com

173 
 

effective fiber strain for FRCM-strengthened RC beams subjected to shear that failed due 

to composite debonding [Gonzalez-Libreros et al. 2017], however more work is needed 

for FRCM-strengthened RC beams subjected to torsion with this failure mode.  

 

2.5 SOLUTION ALGORITHM 

The solution algorithm was implemented using the program MATLAB [2016a]. 

The solution steps are illustrated in the flow chart shown in Figure 6. The basic 

equilibrium equations in Equation 1 were summed and subtracted to obtain Equations 27 

and 28, which were extended from Hsu and Zhu [2002] and used as a convergence 

criterion for the solution procedure. A trial and error procedure was implemented to 

calculate each point of the torsional moment – twist per unit length (T- ψ) curve. 

               𝜌𝜌𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 + 𝜌𝜌𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓𝑠𝑠 + 𝜌𝜌𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 + 𝜌𝜌𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓𝑠𝑠 = (б𝑠𝑠 + б𝑠𝑠) − (б2𝑐𝑐 + б1𝑐𝑐)                            (27) 

𝜌𝜌𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 + 𝜌𝜌𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓𝑠𝑠 − 𝜌𝜌𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 − 𝜌𝜌𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓𝑠𝑠 = (б𝑠𝑠 − б𝑠𝑠) − (б2𝑐𝑐 − б1𝑐𝑐) 𝑐𝑐𝑐𝑐𝑠𝑠 2𝛼𝛼2 − 2𝜏𝜏21𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠2𝛼𝛼2      (28) 

It should be noted that Equations 27 and 28 are written in general form to include terms 

for composite fibers oriented in both the transverse and longitudinal directions. In this 

study, only the contribution of the composite fibers in the transverse (wrap) direction 

(𝜌𝜌𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓𝑠𝑠) were considered since fibers in the longitudinal direction debonded prematurely 

[Alabdulhady and Sneed 2018], and the debonding failure mode is not considered 

(Section 2.4). 

The maximum values of the main variables in this study (ε2, ε1, and γ12) were 

taken as (0.0035, 0.05, and 0.01), respectively. These values were set to arbitrarily large 

values in order to enable the complete solution.  
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3. VALIDATION OF THE MODEL 

The model was validated by comparing the analytical response with the 

experimental response of five RC beams tested by the authors. The experiments are 

summarized briefly in Section 3.1. The predicted torsional moment T versus twist per 

unit length ψ behavior of the unstrengthened (control) beam was generated based on the 

SMMT model for unstrengthened RC beams presented by Jeng and Hsu [2009]. Then, 

modifications based on the Zojaji and Kabir model [2012] discussed in Section 2 were 

implemented to predict the T-ψ response of the four PBO FRCM-strengthened beams. 

The analytical results are summarized and compared with the experimental results in 

Sections 3.2-3.4. 

 

3.1 EXPERIMENTS 

In order to examine the applicability of the SMMT model proposed by Zojaji and 

Kabir [2012] to the FRCM composite material investigated in this study, five beams were 

selected from the experimental program conducted by the authors discussed in detail in 

[Alabdulhady et al. 2017, Alabdulhady and Sneed 2018]. Four of the five beams were 

strengthened, and one beam was unstrengthened for use as the control (see Figure 7a). 

The RC beams had a rectangular cross section and internal reinforcement illustrated in 

Figure 8. The FRCM composite in this study was comprised of PBO fibers with an 

inorganic matrix. The PBO fibers were in the form of a bidirectional unbalanced fiber net 

as shown in Figure 9. The properties of the materials in this study (concrete, steel 

reinforcing bars, and composite fibers) are summarized in Table 1.  The nominal 

thickness of the composite fibers tf was obtained by assuming the fibers in the primary 
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fiber direction (defined in Figure 9) were distributed evenly across the width of the 

composite.  

The strengthened beams that were considered in the analytical study were those 

that failed due to composite fiber rupture and were fully wrapped around the perimeter 

with the primary fiber direction (defined in Figure 9) oriented perpendicular to the 

longitudinal axis of the beam. Two beams (beams N-P-4-S-1 and N-P-4-8S-1) were 

strengthened with one layer of discontinuous strips, with strip width and strip spacing 

indicated in Figures 7b and 7c. Two other beams (beams N-P-4-C-1 and N-P-4-C-2) were 

strengthened continuously along the test region. Beam N-P-4-C-1 was strengthened with 

one layer of composite (Figure 7d), and beam N-P-4-C-2 was strengthened with two 

layers of composite (Figure 7e). The beams are listed in Table 2, which also indicates the 

concrete batch (see Table 1) used to construct each beam. 

The beams were tested under monotonic loading conditions. The response was 

measured by a variety of instruments including a load cell at the beam loading end, linear 

variable differential transformers (LVDTs) mounted at different positions and 

inclinations along the beam length, a rotational variable differential transformer (RVDT) 

mounted along the side face, and strain gages mounted to the reinforcing bars and 

composite fibers at different positions along the length. The experimental response is 

compared with the analytical response in the sections that follow. Additional information 

on the experimental program is discussed in detail in [Alabdulhady et al. 2017, 

Alabdulhady and Sneed 2018].  
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3.2 TORSIONAL MOMENT – TWIST PER UNIT LENGTH (T-ψ) RESPONSE 

The experimental and analytical T-ψ response for all beams is plotted in Figure 

10. Results in Figure 10 show that the analytical model predicted the different stages of 

the experimental response, characterized by a linear behavior before cracking with high 

initial torsional stiffness (pre-cracking stage), followed by an increase in the twist angle 

without increasing torsional moment due to the redistribution of forces from the concrete 

to the steel reinforcement. Then, the behavior became non-linear up to the peak torsional 

moment Tu (i.e., the torsional strength). The drop in the T-ψ response after the peak 

torsional moment (post-peak stage) was also predicted by the analytical model. 

Values of the experimental and analytical cracking moment and peak torsional 

moment, Tcr and Tu, respectively, and the corresponding angle of twist per unit length, ψcr 

and ψu, respectively, for each beam are summarized in Table 2. Results in Table 2 show 

that the model was able to predict the values of Tcr and ψcr with an error in the range of 6-

23% and 3-36%, respectively. The values of Tu and ψu were predicted with an error in the 

range of 0-22% and 1-24%, respectively.  

 

3.3 STRAIN IN STEEL REINFORCING BARS AND PBO FIBERS 

The maximum values of strain at the peak torsional moment Tu in the transverse 

reinforcing bars (stirrups) εt and the FRCM composite fibers εf determined by the 

experimental and analytical model results are summarized in Table 3. Reasonable 

agreement was achieved between the experimental and analytical results.  

Results in Table 3 show that at the peak torsional moment, the analytical strain in 

the PBO fibers for beams strengthened with one and two layers of continuous wrapping 
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(beams N-P-4-C-1 and N-P-4-C-2) was lower than that in beams with discontinuous 

strips. Furthermore, the analytical strain in fibers for beam N-P-4-C-2, which had two 

layers of composite, was lower than in beam N-P-4-C-1, which had one layer of 

composite. The same variation in fiber strain with respect to the number of composite 

layers was also reported by Zojaji and Kabir [2012] for FRP-strengthened beams. The 

trend is also in agreement with experimental results, which showed that the contribution 

of the composite to the torsional strength reduces with an increasing number of 

composite layers [Alabdulhady et al. 2017]. For both beams N-P-4-C-1 and N-P-4-C-2, 

the strain in the fibers is significantly lower than the ultimate strain of the fibers (1.45%, 

Table 1), which is also in agreement with results by Zojaji and Kabir [2012] for FRP-

strengthened beams. The effective fiber strain given by Equation 26 is a function of 

concrete section dimensions and the effective shear flow thickness (td). In fact, the 

effective strain of the fiber is only a practical criterion for analytical models [Zojaji and 

Kabir 2012]. 

 

3.4 ANALYTICAL BEHAVIOR OF CONCRETE AND STEEL 
REINFORCEMENT IN FRCM-STRENGTHENED BEAMS 

 
The aim of this section is to illustrate the effect of the composite system on the 

material behavior of the FRCM-strengthened beams. Figure 11 plots the analytical stress-

strain behavior of the concrete and steel reinforcing bars for the control beam and beam 

N-P-4-C-1 as a representative comparison between the unstrengthened and strengthened 

beams. Locations of reinforcing steel yielding and peak torsional moment are indicated in 

the graphs. The applied shear stress τlt versus shear strain γlt (Figure 11a) and the concrete 
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behavior (Figures 11b,c) was different in both cases. The strengthened beam had higher 

values of stresses with larger corresponding strains due to the effect of confinement and 

the contribution of the composite to the overall behavior as shown in Figures 11a-c. 

Furthermore, for the control (unstrengthened) beam, the location of the peak torsional 

moment on the curves is close to the peak stress and with approximately at the same 

strain value (Figures 11a-c). On the other hand, the peak torsional moment of the 

strengthened beam (N-P-4-C-1) occurs at a stress that is lower than the peak stress and 

with a larger strain value. This indicates that the FRCM-strengthened beam was able to 

carry additional load even though the concrete had reached its ultimate capacity due to 

the effect of confinement provided by the composite system.  

   

4. CONCLUSIONS 

A softened membrane model for torsion (SMMT) for FRP-wrapped beams 

introduced by Zojaji and Kabir [2012] was implemented in this study to predict the full 

torsional response of RC beams externally bonded with PBO-FRCM composite. 

Experimental results from five beams tested by the authors [Alabdulhady et al. 2017, 

Alabdulhady and Sneed 2018] were considered in this paper to validate the applicability 

and the accuracy of the model. The response of the control (unstrengthened) beam was 

compared with the response predicted by the Jeng and Hsu [2009] model, then 

modifications based on the Zojaji and Kabir model [2012] were implemented to predict 

the full torsional moment – twist per unit length response for the strengthened beams. 

The most significant conclusions from this study are summarized below: 
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1. The torsional behavior of the experimentally tested beams was reasonably predicted 

by the analytical model in terms of initial stiffness, cracking torsional moment, and 

peak torsional moment and the corresponding angles of twist per unit length. These 

results confirm the feasibility of the SMMT model to predict the torsional response 

of FRCM-strengthened beams. 

2. Values of the cracking and peak torsional moment and corresponding twist per unit 

length were predicted analytically with maximum error of (23%, 22%), and (36% 

and 24%), respectively.  

3. Beams with fully wrapped (continuous and strips) configurations were considered in 

this study. The mode of failure for all strengthened beam was governed by composite 

fiber rupture. Further modifications are required to extend the model to the 

composite debonding failure mode. 

4. Reasonable agreement was achieved between the experimental and analytical model 

values of strain in the stirrups and the composite fibers at the peak torsional moment.  

5. The effect of confinement and the contribution of the composite on the concrete 

strength could be seen clearly by the higher concrete stress with larger corresponding 

strain for the strengthened beams compared with the unstrengthened beam at peak 

torsional moment. 

 

APPENDIX: EXAMPLE 

A representative example of beam N-P-4-C-1 is provided in this appendix to 

illustrate the calculation details. Table A shows the results of three points from the 

torsional moment – twist per unit length response curve (first yield, second yield, and 
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peak torsional moment). The results in this section were compared with the SMM 

analytical model study on shear presented by Hsu and Zhu [2002] due to lack of 

examples and information on torsion with the SMMT model. Signs and the predicted 

values were in agreement with the calculated values of Hsu and Zhu example [Hsu and 

Zhu 2002]. 
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NOMENCLATURE 

A0 area enclosed by the centerline of shear flow; 𝐴𝐴0 = 𝐴𝐴𝑐𝑐 − 0.5𝑝𝑝𝑐𝑐𝑡𝑡𝑝𝑝 + 𝑡𝑡𝑝𝑝2 

Ac cross sectional area bounded by the outer perimeter of the concrete 

Afl  fiber area in the longitudinal direction; 𝐴𝐴𝑓𝑓𝑠𝑠 = 𝑠𝑠𝑓𝑓𝑠𝑠𝑡𝑡𝑓𝑓𝑠𝑠𝑝𝑝𝑓𝑓𝑠𝑠 

Aft  fiber area in the transverse direction; 𝐴𝐴𝑓𝑓𝑠𝑠 = 𝑠𝑠𝑓𝑓𝑠𝑠𝑡𝑡𝑓𝑓𝑠𝑠𝑤𝑤𝑓𝑓 

Asl  total cross sectional area of the longitudinal steel bars  

Ast  cross sectional area of one transverse steel bar 

b width of the beam section 

Ec elastic modulus of the concrete 

Ef elastic modulus of the fibers 

Es elastic modulus of steel reinforcing bars 

fʹc concrete cylinder compressive strain 
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fcr cracking stress of the concrete 

ffl , fft fiber stresses in the longitudinal and transverse direction, respectively 

ff tensile strength in the direction of the fiber 

ffe effective tensile strength of the fibers 

ffu ultimate tensile strength of the fibers 

fs smeared (average) stress of the steel reinforcing bars 

fsl , fst smeared (average) steel stresses in the longitudinal and transverse direction, 
respectively 
 

fsu maximum stress of the steel reinforcing bars 

fsy yield stress of the steel reinforcing bars 

h height of the beam section 

k composite confinement parameter 

k1c ratio of the average compressive stress to the peak compressive stress in the 
concrete struts, taking into account the tensile stress of concrete 
 

k1t ratio of the average tensile stress to the peak tensile stress in the concrete 
struts 
 

Le effective bond length 

nfl number of composite layer in the longitudinal direction 

nft number of composite layer in the transverse direction 

p0 perimeter of centerline of shear flow zone; 𝑝𝑝0 = 𝑝𝑝𝑐𝑐 − 4𝑡𝑡𝑝𝑝  

pc perimeter of outer concrete cross section 

pst perimeter of the area enclosed by the stirrup 

pfl perimeter of the strengthened beam cross section enclosed by the composite 
in the longitudinal direction 
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pft perimeter of the strengthened beam cross section enclosed by the composite 
in the transverse direction 
 

q shear flow 

s center-to-center spacing of the transverse reinforcing bars (stirrups) 

sf center-to-center spacing between the centerline of the composite strips 

T torsional moment 

td effective thickness of shear flow zone 

tfl fiber thickness in the longitudinal direction of the beam 

tft fiber thickness in the transverse direction of the beam 

w out-of-plane displacement in the direction normal to the membrane element 
as shown in Figure 4 
 

wf width of the composite strip 

α rotating angle, angle of applied principle compressive stress (2-axis) with 
respect to longitudinal steel bars (l-axis) 
 

α2 fixed angle, angle of applied principle compressive stress (2-axis) with 

respect to the longitudinal steel reinforcing bars (l-axis) 

αf constant parameter taking into account the difference in stress distribution 
between continuous composite sheets and strips 
 

αn in-section coefficient of effectiveness of the confinement 

β deviation angle taken as 0.5𝑡𝑡𝑡𝑡𝑠𝑠−1(𝛾𝛾21 (𝜀𝜀2 − 𝜀𝜀1⁄ )) 

ε0 concrete strain at the peak compressive stress fʹc taken as -0.00235 

ε2 , ε1 smeared (average) biaxial strain of concrete in the 2-direction and the 1-
direction, respectively 
 

͞ε2 , ͞ε1 smeared (average) uniaxial strain of concrete in the 2-direction and the 1-
direction, respectively 
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𝜀𝜀͞2𝑠𝑠 , 𝜀𝜀1͞𝑠𝑠 maximum uniaxial strain at the surface in the 2-direction and the 1-direction, 
respectively; 𝜀𝜀2͞𝑠𝑠 = 2𝜀𝜀͞2 and 𝜀𝜀1͞𝑠𝑠 = 2𝜀𝜀1͞ 
 

εcr cracking strain of concrete 

εcu maximum strain of concrete 

εf fiber tensile strain 

εfe effective fiber tensile strain 

εfu ultimate fiber tensile strain 

εl , εt smeared (average) biaxial strain of steel bars in the l-direction and the t-
direction, respectively 
 

͞εl , ͞εt smeared (average) uniaxial strain of steel bars in the l-direction and the t-
direction, respectively 
 

εs smeared (average) strain of steel reinforcing bars 

𝜀𝜀͞𝑛𝑛 smeared (average) uniaxial yield strain of the steel reinforcing bars 

𝜀𝜀͞𝑠𝑠 smeared (average) uniaxial strain of the steel reinforcing bars 

εsf smeared (average) strain of steel reinforcing bars that yield first 

εsu maximum strain of steel reinforcing bar 

εsy yield strain of steel reinforcing bar 

γ21 smeared (average) biaxial shear strain of concrete in the 2-1direction 

͞γ21 smeared (average) uniaxial shear strain of concrete in the 2-1direction 

γlt smeared (average) shear strain of steel reinforcing bars in the l-t direction 

б2 
𝑐𝑐 , б1𝑐𝑐  smeared (average) normal stresses of concrete in the 2-direction and the 1-

direction, respectively 
 

бl , бt applied normal stresses of steel reinforcing bars in the l-direction and the t-
direction, respectively. 
 

𝜏𝜏21𝑐𝑐   smeared (average) shear stress of concrete in 2-1 coordinate 
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τlt applied shear stress in the l-t coordinate of the steel bars 

ρ steel reinforcement ratio 

ρfl , ρft longitudinal and transverse fiber ratios, respectively; 𝜌𝜌𝑓𝑓𝑠𝑠 = 𝐴𝐴𝑓𝑓𝑠𝑠 𝑝𝑝0⁄ 𝑡𝑡𝑝𝑝 and 
𝜌𝜌𝑓𝑓𝑠𝑠 = 𝐴𝐴𝑓𝑓𝑠𝑠𝑝𝑝𝑓𝑓𝑠𝑠 𝑝𝑝0⁄ 𝑡𝑡𝑝𝑝𝑠𝑠𝑓𝑓 
 

ρsl , ρst longitudinal and transverse steel ratios, respectively; 𝜌𝜌𝑠𝑠𝑠𝑠 = 𝐴𝐴𝑠𝑠𝑠𝑠 𝑝𝑝0⁄ 𝑡𝑡𝑝𝑝 and 
𝜌𝜌𝑠𝑠𝑠𝑠 = 𝐴𝐴𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠 𝑝𝑝0⁄ 𝑡𝑡𝑝𝑝𝑠𝑠 
 

ν12 , ν21 Hsu/Zhu ratios used in the SMM: 𝜈𝜈12 = 0.2 + 850𝜀𝜀𝑠𝑠𝑓𝑓 for 𝜀𝜀𝑠𝑠𝑓𝑓 ≤ 𝜀𝜀𝑠𝑠 or 
𝜈𝜈12 = 1.9 for 𝜀𝜀𝑠𝑠𝑓𝑓 > 𝜀𝜀𝑠𝑠 ; 𝜈𝜈21 = 0 
 

ψ angle of twist per unit length 

ϕ curvature of the concrete struts along the 2-direction 

φ curvature of the concrete struts along the 1-direction 

ωn volumetric mechanical ratio of external confinement 

ζ softened coefficient of concrete in compression 

 

 

Table 1. Measured concrete, steel reinforcement and PBO fiber properties. 
Concrete 

 Batch 1 Batch 2 
Compressive strength, MPa 39.3 34.5 

Splitting tensile strength, MPa 3.2 2.8 
Modulus of elasticity, GPa 28.6 28.6 

Steel reinforcing bars 
 No. 3  No. 5 

Modulus of elasticity, GPa 200 193 
Yield strength, MPa 454 469 

Ultimate strength, MPa 717 738 
PBO Fiber 

Nominal thickness in primary fiber direction, 
mm 0.046 

Ultimate tensile strength, MPa 3015 
Modulus of elasticity, GPa 206 

Ultimate tensile strain, mm/mm 0.0145 
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Table 2. Summary of experimental and analytical torsional moment and corresponding 
twist per unit length. 

Beam ID Concret
e Batch 

Tcr kN-m Ψcr  deg./m  Tu kN-m ψu deg./m 

Exp. Ana. Ana. 
/Exp. Exp. Ana. Ana. 

/Exp. Exp. Ana. Ana. 
/Exp. Exp. Ana. Ana. 

/Exp. 
Control 

[Alabdulhady 
et al. 2017, 

Alabdulhady 
and Sneed 

2018] 

1  10.4 11.0 1.06 0.165 0.209 1.25  16.8 16.9 1.00 3.346 3.583 1.08 

N-P-4-S-1 
[Alabdulhady 

et al. 2017, 
Alabdulhady 

and Sneed 
2018] 

1  14.3 11.9 0.84 0.134 0.138 1.03  21.8 25.9 1.19 9.646 9.567 0.99 

N-P-4-8S-1 
[Alabdulhady 

and Sneed 
2018] 

2  11.1  12.1 1.09 0.244 0.157 0.64  20.2 24.8 1.22 8.937 7.559 0.85 

N-P-4-C-1 
[Alabdulhady 

et al. 2017, 
Alabdulhady 

and Sneed 
2018] 

1  13.7  11.8 0.86 0.161 0.173 1.07  27.2  27.3 1.01 9.055 8.622 0.95 

N-P-4-C-2 
[Alabdulhady 

et al. 2017, 
Alabdulhady 

and Sneed 
2018] 

1  16.3  12.5 0.77 0.157 0.185 1.18 35.1  36.3 1.03 9.488 7.165 0.76 

 
 
 
 
 
 
 
 

Table 3. Strain in the transverse reinforcing bars and composite fibers at the peak 
torsional moment. 

Beam 
Transverse reinforcing bar strain Composite fiber strain 

εt (%) 
(Exp.) 

εt (%) 
(Ana.) 

Ana. 
/Exp. 

εf (%) 
(Exp.) 

εf (%) 
(Ana.) 

Ana. 
/Exp. 

Control 0.252 0.239 0.95 -- -- -- 
N-P-4-S-1 0.295 0.424 1.44 1.026 0.707 0.69 
N-P-4-8S-1 0.386 0.396 1.03 0.506 0.935 1.85 
N-P-4-C-1 0.275 0.358 1.30 0.822 0.395 0.48 
N-P-4-C-2 0.305 0.165 0.54 0.653 0.248 0.38 
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Table 4. Representative example of beam (N-P-4-C-1). 

Variable Equation # Unit 
Calculated Values 

First Yield Second 
Yield Peak Torque 

ε2 Selected  -0.00069 -0.00119 -0.00266 
ε1 Assumed  0.00454 0.00710 0.01292 
γ12 Assumed  -0.00072 -0.00103 -0.00196 
εl Eq. 3a  0.00157 0.00244 0.00415 
εt Eq. 3b  0.00228 0.00347 0.00611 

v12 Nomenclature  1.9 1.9 1.9 
͞ε2 Eq. 4b  -0.00069 -0.00119 -0.00266 
͞ε1 Eq. 4a  0.00323 0.00484 0.00787 
͞εl Eq. 5a  0.00091 0.00131 0.00163 
͞εt Eq. 5b  0.00163 0.00234 0.00358 
ζ Eq. 13  0.595 0.525 0.442 
б2 
𝑐𝑐  Eq. 11 MPa -15.16 -16.93  -16.19 
б1𝑐𝑐 Eq. 17 MPa 1.28 1.10 0.92 
бl Eq. 1a MPa -2.56 -1.59 -0.58 
бt Eq. 1b MPa 2.37 2.23 1.57 
𝜏𝜏21𝑐𝑐  Eq. 21 MPa -1.13 -1.12 -1.07 
fl Eq. 22 MPa 175.67 252.97 313.85 
ft Eq. 22 MPa 325.16 388.70 392.11 
ρsl Nomenclature  0.0313 0.0294 0.0259 
ρst Nomenclature  0.0213 0.0200 0.0176 
ρft Nomenclature  0.00183 0.00172 0.00151 
𝜀𝜀𝑓𝑓𝑓𝑓 Eq. 26  0.00335 0.00354 0.00395 
ff Eq. 25 MPa 690.78 729.48 813.61 
τlt Eq. 1a MPa 8.22 9.01 8.56 
γlt Eq. 3c  0.00523 0.00829 0.01558 
td Eqs. 9 &10 mm 28.28 30.41 35.30 
T Eq. 2 kN-m 22.48 25.99 27.32 
ψ Eq. 6 deg./m 2.80 4.49 8.62 
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Figure 1. Torsional deformation of fiber reinforced composite-strengthened RC beam and 
in-plane stresses of an element taken from shear flow zone (adapted from [Chalioris 

2007]). 
 
 
 
 
 

 

 Figure 2. Mohr circle for stresses. 
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Figure 3. Mohr circle for strains. 

 

 

 

Figure 4. In-plane biaxial stress state with out-of-plane bending (adapted from [Jeng and 
Hsu 2009]). 
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Figure 5. Constitutive stress–strain relationships for the materials: (a) concrete in 

compression, (b) concrete in tension, (c) steel reinforcing bar in tension; (d) composite 
fiber in tension.  
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Figure 6. Solution algorithm.  
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Figure 7. Schematic configuration of beams considered in this study: a) control beam, b) 
one layer, 90° strips (N-P-4-S-1), c) one layer, 90° strips (N-P-4-8S-1), d) one layer, 90° 

continuous (N-P-4-C-1), e) two layers, 90° continuous (N-P-4-C-2). 
 

 

 

 

 

Figure 8. Internal reinforcement details. 
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Figure 9. PBO fiber directions. 
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Figure 10. Experimental and analytical torsional moment-twist per unit length (T-ψ) 
response: a) control beam, b) N-P-4-S-1, c) N-P-4-8S-1, d) N-P-4-C-1, e) N-P-4-C-2. 
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Figure 11. Comparison of analytical material behavior for the control beam and beam N-
P-4-C-1: a) applied shear stress τlt vs. shear strain γlt, b) concrete compressive stress б2 

𝑐𝑐 vs. 
compressive strain ε2, c) concrete shear stress 𝜏𝜏21𝑐𝑐  vs. shear strain γ21, d) transverse steel 

stress ft vs. uniaxial steel strain 𝜀𝜀͞𝑠𝑠. 
 

 

 

 

 



www.manaraa.com

195 
 

REFERENCES 

Alabdulhady, M. Y., & Sneed, L. H. (2018). A study of the effect of fiber orientation on 
the torsional behavior of RC beams strengthened with PBO-FRCM 
composite.  Construction and Building Materials, 166, 839-854. 

 
Alabdulhady, M. Y., Sneed, L. H., & Carloni, C. (2017). Torsional behavior of RC beams 

strengthened with PBO-FRCM composite–An experimental study. Engineering 
Structures, 136, 393-405. 

 
Aljazaeri, Z. R., & Myers, J. J. (2017). Strengthening of Reinforced-Concrete Beams in 

Shear with a Fabric-Reinforced Cementitious Matrix. Journal of Composites for 
Construction, 21(5), 04017041. 

 
Ameli, M., & Ronagh, H. R. (2007). Analytical method for evaluating ultimate torque of 

FRP strengthened reinforced concrete beams. Journal of Composites for 
construction, 11(4), 384-390. 

 
Ameli, M., Ronagh, H. R., & Dux, P. F. (2007). Behavior of FRP strengthened reinforced 

concrete beams under torsion. Journal of Composites for Construction, 11(2), 
192-200. 

 
Babaeidarabad, S., Loreto, G., & Nanni, A. (2014). Flexural strengthening of RC beams 

with an externally bonded fabric-reinforced cementitious matrix. Journal of 
Composites for Construction, 18(5), 04014009. 

 
Belarbi, A., & Hsu, T. T. (1995). Constitutive laws of softened concrete in biaxial tension 

compression. Structural Journal, 92(5), 562-573. 
 
Bredt, R. (1896). Kritische Bemerkungen zur drehungselastizitat. Zeitschrift des Vereines 

Deutscher Ingenieure, 40(28), 785-790. 
 
Carloni, C., Mazzotti, C., Savoia, M., & Subramaniam, K. V. (2014). Confinement of 

Masonry Columns with PBO FRCM Composites. Key Engineering Materials, 
624. 

 
Chai, H. K., Majeed, A. A., & Allawi, A. A. (2014). Torsional Analysis of Multicell 

Concrete Box Girders Strengthened with CFRP Using a Modified Softened Truss 
Model. Journal of Bridge Engineering, 20(8), B4014001. 

 
Chalioris, C. E. (2007). Analytical model for the torsional behavior of reinforced concrete 

beams retrofitted with FRP materials. Engineering Structures, 29(12), 3263-3276. 
 
 
 



www.manaraa.com

196 
 

Chalioris, C. E. (2008). Torsional strengthening of rectangular and flanged beams using 
carbon fibre-reinforced-polymers–Experimental study. Construction and Building 
Materials, 22(1), 21-29. 

 
Colajanni, P., De Domenico, F., Recupero, A., & Spinella, N. (2014). Concrete columns 

confined with fibre reinforced cementitious mortars: experimentation and 
modelling. Construction and Building Materials, 52, 375-384. 

 
D’Ambrisi, A., & Focacci, F. (2011). Flexural strengthening of RC beams with cement-

based composites. Journal of Composites for Construction, 15(5), 707-720. 
 
D’Antino, T., Sneed, L. H., Carloni, C., & Pellegrino, C. (2015). Influence of the 

substrate characteristics on the bond behavior of PBO FRCM-concrete 
joints. Construction and Building Materials, 101, 838-850. 

 
Deifalla, A., & Ghobarah, A. (2010). Full torsional behavior of RC beams wrapped with 

FRP: analytical model. Journal of Composites for Construction, 14(3), 289-300. 
 
Deifalla, A., Awad, A., & Elgarhy, M. (2013). Effectiveness of externally bonded CFRP 

strips for strengthening flanged beams under torsion: An experimental study. 
Engineering Structures, 56, 2065-2075. 

 
fib Bulletin 14 (2001). Externally bonded FRP reinforcement for RC structures. CEB-

FIP, Lausanne, Switzerland, 2001, 130 pp. 
 
Ganganagoudar, A., Mondal, T. G., & Prakash, S. S. (2016). Analytical and finite 

element studies on behavior of FRP strengthened RC beams under torsion. 
Composite Structures, 153, 876-885. 

 
Ghobarah, A., Ghorbel, M. N., & Chidiac, S. E. (2002). Upgrading torsional resistance of 

reinforced concrete beams using fiber-reinforced polymer. Journal of Composites 
for Construction, 6(4), 257-263. 

 
Gonzalez-Libreros, J. H., Sabau, C., Sneed, L. H., Pellegrino, C., & Sas, G. (2017). State 

of research on shear strengthening of RC beams with FRCM 
composites. Construction and Building Materials, 149, 444-458. 

 
Gonzalez-Libreros, J. H., Sabau, C., Sneed, L. H., Pellegrino, C., & Sas, G. (2017). State 

of research on shear strengthening of RC beams with FRCM 
composites. Construction and Building Materials, 149, 444-458. 

 
Gonzalez-Libreros, J. H., Sneed, L. H., D'Antino, T., & Pellegrino, C. (2017). Behavior 

of RC beams strengthened in shear with FRP and FRCM composites. Engineering 
Structures, 150, 830-842. 

 



www.manaraa.com

197 
 

Hii, A. K., & Al-Mahaidi, R. (2006). An experimental and numerical investigation on 
torsional strengthening of solid and box-section RC beams using CFRP laminates. 
Composite Structures, 75(1), 213-221. 

 
Hii, A. K., & Al-Mahaidi, R. (2006). Experimental investigation on torsional behavior of 

solid and box-section RC beams strengthened with CFRP using photogrammetry. 
Journal of Composites for Construction, 10(4), 321-329. 

 
Hsu, T. T. (1990). Shear flow zone in torsion of reinforced concrete. Journal of 

Structural Engineering, 116(11), 3206-3226. 
 
Hsu, T. T. (1993). Unified theory of reinforced concrete. Boca Raton (FI): CRC. 
 
Hsu, T. T., & Zhu, R. R. (2002). Softened membrane model for reinforced concrete 

elements in shear. Structural Journal, 99(4), 460-469. 
 
Jeng, C. H., & Hsu, T. T. (2009). A softened membrane model for torsion in reinforced 

concrete members. Engineering Structures, 31(9), 1944-1954. 
 
Loreto, G., Babaeidarabad, S., Leardini, L., & Nanni, A. (2015). RC beams shear-

strengthened with fabric-reinforced-cementitious-matrix (FRCM) composite. 
International Journal of Advanced Structural Engineering (IJASE), 7(4), 341-352. 

 
MATLAB and Statistics Toolbox Release 2016a. The MathWorks, Inc., Natick, 

Massachusetts, United States. 
 
Ombres, L. (2011). Flexural analysis of reinforced concrete beams strengthened with a 

cement based high strength composite material. Composite Structures, 94(1), 143-
155. 

 
Ombres, L. (2012). Shear capacity of concrete beams strengthened with cement based 

composite materials. In Proceedings of the 6th International Conference on FRP 
Composites in Civil Engineering. (CICE 2012). Roma, Italy. 

 
Ombres, L. (2015). Structural performances of reinforced concrete beams strengthened in 

shear with a cement based fiber composite material. Composite Structures, 122, 
316-329. 

 
Panchacharam, S., & Belarbi, A. (2002). Torsional behavior of reinforced concrete beams 

strengthened with FRP composites. In First FIB Congress, Osaka, Japan (Vol. 1, 
pp. 01-110). 

 
Salom, P. R., Gergely, J., & Young, D. T. (2004). Torsional strengthening of spandrel 

beams with fiber-reinforced polymer laminates. Journal of Composites for 
Construction, 8(2), 157-162. 



www.manaraa.com

198 
 

Shen, K., Wan, S., Mo, Y., & Jiang, Z. (2017). Theoretical analysis on full torsional 
behavior of RC beams strengthened with FRP materials. Composite Structures. 

 
Sneed, L. H., Carloni, C., Baietti, G., & Fraioli, G. (2017). Confinement of Clay Masonry 

Columns with SRG. In Key Engineering Materials (Vol. 747, pp. 350-357). Trans 
Tech Publications. 

 
Sneed, L. H., D’Antino, T., & Carloni, C. (2014). Investigation of bond behavior of PBO 

fiber-reinforced cementitious matrix composite-concrete interface. ACI Materials 
Journal, 111(1-6), 1-12. 

 
Sneed, L.H., Verre, S., Carloni, C., & Ombres, L., 2016. “Flexural Behavior of RC 

Beams Strengthened with Steel-FRCM Composite.” Engineering Structures, 127, 
pp. 686-699.  

 
Trapko, T., Urbańska, D., & Kamiński, M. (2015). Shear strengthening of reinforced 

concrete beams with PBO-FRCM composites. Composites Part B: Engineering, 
80, 63-72. 

 
Vintzileou, E., & Panagiotidou, E. (2008). An empirical model for predicting the 

mechanical properties of FRP-confined concrete. Construction and Building 
Materials, 22(5), 841-854. 

 
Zhu, R. R., & Hsu, T. T. (2002). Poisson effect in reinforced concrete membrane 

elements. Structural Journal, 99(5), 631-640. 
 
Zojaji, A. R., & Kabir, M. Z. (2012). Analytical approach for predicting full torsional 

behavior of reinforced concrete beams strengthened with FRP materials. Scientia 
Iranica, 19(1), 51-63. 

 

 

 

 

 

 

 

 



www.manaraa.com

199 
 

SECTION 

 
2. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 
2.1 SUMMARY OF RESEARCH WORK  

The aim of this research was to study the torsional behavior of RC beams 

strengthened externally with PBO-FRCM composite. Experimental, numerical, and 

analytical studies were included in this study. 

The experimental program included 11 beams, one without strengthening as a 

control beam and 10 strengthened with PBO-FRCM composite material in different 

wrapping configurations. The effect of different parameters such as number of wrapped 

sides, the continuity of composite layer (along the beam length), number of composite 

layers and fiber orientation on the torque-twist response, rotational capacity, and mode of 

failure was introduced and discussed. Strains measured in the internal and external 

reinforcement and the longitudinal elongation of the beam with respect to its axis were 

examined. The contribution of the strengthening system to the torsional strength was 

evaluated by the strain measured in the composite fibers. Provisions used to estimate the 

torsional strength of RC beams with fully-wrapped, externally-bonded fiber reinforced 

polymer (FRP) composites were explored to examine their applicability on the beams 

strengthened with PBO-FRCM composite. 

In order to gain a better understanding of the torsional behavior of FRCM-

strengthened RC beams, six beams with different strengthening schemes were evaluated 

numerically by implementing a nonlinear software program package LS-DYNA 971 R3. 

Torsional strength, torsional moment-twist per unit length response, and strains in the 
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internal and external reinforcement were evaluated and compared with experimental 

results to validate the model and determine its accuracy. The model was further used for a 

parametric study in order to shed light on the influence of concrete compressive strength 

and composite strip width and spacing on the response of FRCM-strengthened RC 

beams. Furthermore, an analytical study based on the softened membrane model for 

torsion (SMMT) was conducted to study the full torsional response of PBO-FRCM-

strengthened beams. 

 

2.2 CONCLUSIONS  

This section summarizes the conclusions from the experimental, numerical, and 

analytical studies on torsional strengthening of RC beams strengthened with PBO-FRCM 

composite. With regard to the experimental work, the following conclusions are 

presented: 

• This study demonstrated that externally bonded PBO-FRCM composites can 

be used to strengthen RC beams in torsion. Failure of the strengthened beams 

was associated with debonding of the composite, which was characterized by 

significant slippage between the fibers and matrix.  

• Increases in the cracking torque, torsional strength, and corresponding values 

of twist were achieved by beams strengthened with a 4-sided wrapping 

configuration relative to the control (unstrengthened) beam. On the other 

hand, the 3-sided wrapping configuration was found to be largely ineffective 

in improving the torsional performance.  
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• The 4-sided wrapping configuration improved the torsional performance by 

providing additional reinforcement as well as confinement, which delayed and 

controlled concrete cracking. 

• The normalized cracking torsional moment of all strengthened beams was 

larger than that of the unstrengthened beam, with a maximum increase of 

58%. The maximum increase in the normalized peak torsional moment 

relative to control beam was 109%. These results indicate that PBO-FRCM 

composite can be a suitable material for torsional strengthening of RC beams.   

• The normalized cracking torsional moment of the beam with one layer of 

fibers with 4-sided 0° fiber orientation (parallel to the longitudinal axis of the 

beam) was increased relative to that of the control beam, while no significant 

increase in the normalized peak torsional moment was observed. However, the 

normalized cracking and peak torsional moments were improved significantly 

for beams with 4-sided, 90° fiber orientation. 

• Concrete crushing governed the failure of the unstrengthened control beam 

and the strengthened beams with 3-sided wrapping configurations.  Fiber 

rupture followed by concrete crushing and preceded by stirrup yielding 

governed the failure for beams strengthened with 1-layer, 4-sided, 90° fiber 

orientation and the beam strengthened with 2-layers, 4-sided, 90° fiber 

orientation. 
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• Debonding of the fibers from the concrete substrate governed the failure of the 

strengthened beams with 4-sided, 45° strips, the strengthened beam with 4-

sided, 0° continuous wrapping, and the strengthened beam with two layers 

(0°/90°) fiber orientation. 

• The FRCM composite reduced the longitudinal elongation of the strengthened 

beams up to 92% compared to the control beam at the peak load of the control 

beam. 

• The contribution of the strengthening system to the torsional strength was 

reasonably predicted (+/- 20%) by the strains in the composite fibers. 

Provisions used to estimate the torsional strength of RC beams with 

externally-bonded FRP composites were found to be applicable for beams 

strengthened with FRCM composites. 

• The trend in the efficiency of PBO-FRCM composite in increasing the 

torsional strength of solid RC members is similar to that of GFRP and CFRP 

composites.  

• Similar to GFRP-strengthened beams, the 90° fiber orientation was more 

effective in increasing the torsional strength than the 0° orientation for PBO-

FRCM strengthened beams.  On the other hand, the 45° fiber orientation was 

more effective than the 90° orientation for CFRP-strengthened beams, while 

PBO-FRCM composite-strengthened beams exhibited the opposite trend. 

Debonding of the PBO-FRCM composite fibers at the ends of the strips 

contrasted the potential benefits from optimizing the fiber orientation and led 

to the underutilization of the composite.  
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• Further investigations are needed to select a suitable anchorage system for 

beams strengthened with PBO-FRCM composite without overlap at the ends 

of the fiber sheets. 

Based on the numerical study, the following conclusions are presented: 

• The general torsional behavior of the experimentally tested beams was 

predicted accurately by the finite element model in terms of initial stiffness 

and peak torque. 

• The peak torque and twist per unit length were predicted by the model with 

maximum error of 18% and 32%, respectively. Values of strains in the 

internal reinforcement and the composite fibers determined by the 

experiments and FE results at the peak torque were compared at the beam 

midlength. Reasonable agreement was achieved between the experimental and 

FE results. 

• Results of the parametric study showed that values of concrete compressive 

strength higher than that of the baseline beam (f’c=5,700 psi) (39.3 MPa) did 

not increase the torsional strength. On the other hand, a reduction in torsional 

strength was observed for values of concrete compressive strength lower than 

that of the baseline beam. The difference is due to different failure modes, 

namely fiber rupture for beams with higher values of f’c and crushing of the 

concrete strut for lower values of f’c. 

• The parametric study also showed that the torsional strength increases with 

increasing fiber reinforcement ratio, although the increase in torsional strength 

is not directly proportional to the increase in fiber reinforcement ratio. Beams 
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with the same fiber reinforcement ratio but different strip width and spacing 

exhibited similar increases in torsional strength relative to the control beam. 

Based on the analytical study, the following conclusions are presented: 

• The torsional behavior of the experimentally tested beams was reasonably 

predicted by the analytical model in terms of initial stiffness, cracking 

torsional moment, and peak torsional moment and the corresponding angles of 

twist per unit length. These results confirm the feasibility of the SMMT model 

to predict the torsional response of FRCM-strengthened beams. 

• Values of the cracking and peak torsional moment and corresponding twist 

per unit length were predicted analytically with maximum error of (23%, 

22%), (36% and 24%), respectively.  

• Beams with fully wrapped (continuous and strips) configurations were 

considered in this study. The mode of failure for all strengthened beam was 

governed by composite fiber rupture. Further modifications are required to 

extend the model to the composite debonding failure mode. 

• Reasonable agreement was achieved between the experimental and analytical 

model values of strain in the stirrups and the composite fibers at the peak 

torsional moment.  

• The effect of confinement and the contribution of the composite on the 

concrete strength could be seen clearly by the higher concrete stress with 

larger corresponding strain for the strengthened beams compared with the 

unstrengthened beam at peak torsional moment. 
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2.3 RECOMMENDATIONS  

Based on the objective and scope of work of this study, the following aspects are 

recommended for future research: 

1. Further investigations are needed to study the torsional behavior of RC beams 

strengthened with PBO-FRCM with a suitable anchorage system.   

2. The torsional behavior of RC beams strengthened with PBO-FRCM under 

cyclic loading should be investigated. 

3. Beams in this study had solid, rectangular cross sections. The torsional 

behavior of hollow and T- or L-shaped RC beams strengthened with PBO-

FRCM composite needs further study. 

4. The behavior of RC beams strengthened with PBO-FRCM composite under 

combined loading (shear, flexure, axial, and torsion) should be investigated. 

5.  Further experimental and numerical studies are needed for torsional behavior 

of plain concrete beams (i.e., without internal transverse reinforcement) 

externally strengthened with PBO-FRCM composite.  

6. The analytical model presented in this thesis work considered fiber rupture 

failure mode. Further research is needed to extend the model to the composite 

debonding failure mode. 
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